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Preface

Dynamical systems are often subject to random influences, such as external fluctua-
tions, internal agitation, fluctuating initial conditions, and uncertain parameters.
In building mathematical models for these systems, some less-known, less well-
understood, or less well-observed processes (e.g., highly fluctuating fast or small
scale processes) are ignored because of a lack of knowledge or limitations in our an-
alytical skills and computational capability. This ignorance also contributes to the
uncertainty in mathematical models of complex dynamical systems. However, the
uncertainty or randomness may have a delicate and profound impact on the overall
evolution of complex dynamical systems. Indeed, there is a clear recognition of the
importance of taking randomness into account when modeling complex phenomena
in biological, chemical, physical, and other systems.

Stochastic differential equations are usually appropriate models for randomly
influenced systems. Although the theoretical foundation for stochastic differential
equations has been provided by stochastic calculus, better understanding dynamical
behaviors of these equations is desirable.

‘Who is this book for?

There is growing interest in stochastic dynamics in the applied mathematics commu-
nity. This book is written primarily for applied mathematicians who may not have
the necessary background to go directly to advanced reference books or research
literature in stochastic dynamics. My goal is to provide an introduction to basic
techniques for understanding solutions of stochastic differential equations, from an-
alytical, deterministic, computational and structural perspectives. In deterministic
dynamical systems, invariant manifolds and other invariant structures provide global
information for dynamical evolution. For stochastic dynamical systems, in addition
to these invariant structures, certain computable quantities, such as the mean exit
time and escape probability (reminiscent of the quantities like “eigenvalues” and
“Poincaré index” in deterministic dynamics, and “entropy” in statistical physics),
also offer insights into global dynamics under uncertainty. The mean exit time and
escape probability are computed by solving deterministic, local or nonlocal, partial
differential equations. Thus, I treat them as deterministic tools for understanding
stochastic dynamics. It is my hope that this book will help the reader in accessing
advanced monographs and research literature in stochastic dynamics.
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What does this book do?

A large part of the materials in this book is based on my lecture notes for the gradu-
ate course Stochastic Dynamics that I have taught for many times since 1997. Among
the students who have taken this course, about two-thirds are from applied mathe-
matics, and the remaining one-third are from departments such as physics, computer
science, bioengineering, mechanical engineering, electrical engineering, and chemical
engineering. I would like to thank those graduate students for helpful feedback and
for solutions to some exercises. For this group of graduate students, selection of
topics and choice of presentation style are necessary. Thus, some interesting topics
are not included. The choice of topics is personal but is influenced by my teaching
to these graduate students, who have basic knowledge in differential equations, dy-
namical systems, probability, and numerical analysis. Some materials are adopted
from my recent research with collaborators, and these include most probable phase
portraits in Chapter 5, and random invariant manifolds in Chapter 6, together with
mean exit time, escape probability and nonlocal Fokker-Planck equations for systems
with non-Gaussian Lévy noise in Chapter 7.

I have tried to strike a balance between mathematical precision and accessibility
for the readers of this book. For example, some proofs are presented, whereas some
are outlined and others are directed to references. Some definitions are presented in
separate paragraphs starting with Definition, but many others are introduced less
formally as they occur in the body of the text. As far as possible, I have tried to
make connections between new concepts in stochastic dynamics and old concepts in
deterministic dynamics.

After some motivating examples (Chapter 1), background in analysis and pro-
bability (Chapter 2), a mathematical model for white noise (Chapter 3), and a crash
course in stochastic differential equations (Chapter 4), I focus on three topics:

e Quantities that carry stochastic dynamical information (Chapter 5):
This includes moments, probability densities, most probable phase portraits, mean
exit time, and escape probability.

e Structures that build stochastic dynamics (Chapter 6): This includes
the multiplicative ergodic theorem and Hartman-Grobman theorem for linearized
stochastic systems, and invariant manifolds for nonlinear stochastic systems.

e Non-Gaussian stochastic dynamics (Chapter 7): This is an introduction
to systems driven by non-Gaussian, a-stable Lévy motions.

This book is full of examples, together with many figures. There are separate
Matlab simulation sections in Chapters 2-4, whereas in Chapters 5 and 7, numerical
simulations are included inside various sections. Although Chapter 6 contains no
numerical simulations for its nature, it has Examples and Problems that require
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detailed derivations or calculations by hand. At the end of each chapter, there
are homework problems, including some numerical simulation problems; Matlab is
sufficient for this purpose. Most of these problems have been tested in the classroom.
Hints or solutions to most problems are provided at the end of the book.

A section with an asterisk may be skipped on a first reading.

Some additional references are provided in the “Further Readings” section, for
more advanced readers.

What prerequisites are assumed?

For the reader, it is desirable to have basic knowledge of dynamical systems, such
as the material contained in

e Chapters 1-2 of Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields by J. Guckenheimer and P. Holmes; or
e Chapters 1-2 of Introduction to Applied Nonlinear Dynamical Systems and
Chaos by S. Wiggins; or
e Chapters 1-2 of Differential Equations and Dynamical Systems by L. Perko;
or
e Chapters 1-3 of Nonlinear Dynamics and Chaos by S. H. Strogatz.
Ideally, it is also desirable to have elementary knowledge of stochastic differential
equations, such as
e Chapters 1-6 of Stochastic Differential Equations by L. Arnold; or
e Chapters 1-5 of An Introduction to Stochastic Differential Equations by L. C.
Evans; or
e Chapters 1-5 of Stochastic Differential Equations by B. Oksendal; or
e Chapters 1-3 of Stochastic Methods by C. Gardiner.
Realizing that some readers may not be familiar with stochastic differential equa-
tions, I review this topic in Chapter 4.

Acknowledgements

I would like to thank Philip Holmes for suggesting that I write this book back in
2004, when we were taking an academic tour in China. Steve Wiggins has also
encouraged me to publish this book. I am especially grateful to Ludwig Arnold,
who has always inspired and encouraged my learning and research in stochastic
dynamics. I appreciate Bernt Oksendal’s encouragement and comments. I have
benefited from many years of productive collaboration and interaction with many
colleagues, especially Peter Bates, Peter Baxendale, Dirk Blomker, Tomas Cara-
ballo, Michael Cranston, Hans Crauel, Manfred Denker, David Elworthy, Franco
Flandoli, Hongjun Gao, Martin Hairer, Peter Imkeller, Peter E. Kloeden, Kening
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Lu, Navaratnam Sri Namachchivaya, Anthony Roberts, Michael Scheutzow, Bjorn
Schmalfuss, Richard Sowers, Xu Sun, Yong Xu, and Huaizhong Zhao. My interest
in non-Gaussian stochastic dynamics started with a joint paper with D. Schertzer,
M. Larcheveque, V. V. Yanovsky and S. Lovejoy in 2000 and was further inspired
and enhanced by Peter Imkeller and Ilya Pavlyukevich during my sabbatical leave
at Humboldt University in Berlin in 2006.

Ludwig Arnold proofread this entire book and provided invaluable comments and
suggestions. Han Crauel, Peter Imkeller, Peter Kloeden, Liu Jicheng, Lu Guangy-
ing, Mark Lytell, Bjorn Schmalfuss, Song Renming, Wang Xiangjun, Wu Jianglun
proofread part of this book and their comments and corrections helped improve the
book in various ways.

I thank Yan Jia-an for helpful discussions about topics in Chapter 4. I am very
grateful to Chen Zhenging, Li Xiaofan, Qiao Huijie, Song Renming, Wang Xiangjun
and Wu Jianglun for helpful discussions about topics in Chapter 7. My former
and current graduate students, especially Chen Xiaopeng, Fu Hongbo, Gao Ting,
Guo Zhongkai, Jiang Tao, Kan Xingye, Mark Lytell, Ren Jian, Yang Jiarui and
Zheng Yayun, have helped with generating figures, proofreading some chapters, and
providing solutions to some Problems.

I would also like to acknowledge the National Science Foundation for its many
years’ generous support of my research. A part of this book was written while I was
at the Institute for Pure and Applied Mathematics (IPAM), Los Angeles, during
2011-2013. Diana Gillooly at Cambridge University Press, and Zhao Yanchao and
Li Xin at Science Press have provided valuable professional help for the completion
of this book.

My wife, Xiong Yan, and my children, Victor and Jessica, are constant sources
of inspiration and happiness. Their love and understanding made this book possible.

Duan Jingiao
Wuhan, April 2014



Notations

£: Is defined to be
|z|: Absolute value of x € R?
lz||: Euclidean norm of z € R™
a A b= min{a, b}
a Vb= max{a, b}
at £ max{a,0}
a” £ max{—a,0}

B;: Brownian motion

B(R™): Borel o-field of R™

B(S): Borel o-field of state space S

Supp(f) £ Closure of {x € R : f(z) # 0}: The support of function f

C(R™): Space of continuous functions on R™

Co(R™): Space of continuous functions on R™ which have compact support

C*(R™): Space of continuous functions on R™ which have up to k-th order con-
tinuous derivatives

CE(R™): Space of continuous functions on R” which (i) have up to k-th order
continuous derivatives, and (ii) have compact support

C*°(R™): Space of continuous functions on R™ which have derivatives of all orders

C§°(R™): Space of continuous functions on R™ which (i) have derivatives of all
orders, and (ii) have compact support

C*(D): Space of functions which are locally Hélder continuous in D with expo-
nent «

C*(D): Space of functions which are uniformly Hélder continuous in D with
exponent o

C*2(D): Space of continuous functions in D whose k-th order derivatives are
locally Holder continuous in D with exponent «

4(€): Dirac delta function

E: Expectation

E*: Expectation with respect to the probability measure P* induced by a solution
process starting at x

Fx (z): Distribution function of the random variable X

FX or 0(X): o-field generated by the random variable X



x Notations

FXt = 0(Xs,s € R): o-field generated by a stochastic process X;. It is the
smallest o-field with which X; is measurable for every t.
: o-field generated by the stochastic process &
o(Bs : s < t): Filtration generated by Brownian motion B,
U(Ut;O Ft)
ne>0 Five
0(Usct Fs)
FX £ 0(Xs: 0<s<t): Filtration generated by a stochastic process X;
Ft oo £ 0(UsgeFL): Also denoted as \/,, Fi
F® £ 0(Upzs FL): Also denoted as \/,,, Fi
H(f): Hessian matrix of a scalar function f: R® — R!
H (&): Heaviside function
H*(D): Sobolev space
HE(D): Sobolev space of functions with compact support
|- llx: Sobolev norm in H*(D) or H§(D)
lim in m.s.: Convergence in mean square, i.e., convergence in L?((2)
IP: Space of infinite sequences {z;}$2, such that Y .o, |z:|P < o0
L?(R™) : Space of square-integrable functions defined on R™
LP(R™) : Space of p-integrable functions defined on R™, with p > 1
LP(D) : Space of p-integrable functions defined on a domain D C R", with p > 1

> (> > > 1>

L2(Q) or L%(2,R™) : Space of random variables, taking values in Euclidean space
R™, with finite variance

L2(Q2) or L?(2, H) : Space of random variables, taking values in Hilbert space
H, with finite variance

LP(Q) or LP(Q,R™): {X : E|X|P < oo} forp>1

L¢(w): Lévy motion

L& (w): a-stable Lévy motion

N: Set of the natural numbers

N (p,0?): Normal (or Gaussian) distribution with mean p and variance o

v(dy): Lévy jump measure

P: Probability measure

P(A) or P{A}: Probability of an event A

PX: Distribution measure induced by the random variable X

P*: Probability measure induced by a solution process starting at z

P(X): Poisson distribution with parameter A > 0

R: Two-sided time set

R*: One-sided time set {t: ¢ > 0}

R!: One dimensional Euclidean space



Notations xi

R™: n-dimensional Euclidean space

o(X) or FX: o-field generated by the random variable X. It is the smallest
o-field with which X is measurable.

Tr(A): Trace of A

U(a,b): Uniform distribution on the interval [a, b]

Vi<t Fi = 0(Us<tFL): Also denoted as F*

Viss Fe = 0(UssFL): Also denoted as Fg°

> >



Contents

Chapter 1 Introduction -« -« rerrremeiimmii i 1
1.1 Examples of deterministic dynamical systems - ««««-«ccvreeeeerereain... 1
1.2 Examples of stochastic dynamical systems: -« «««-«ocevereeeeaiiiiin 8
1.3 Mathematical modeling with stochastic differential equations----------- 10
1.4 Outline Of thiS DOOK =+« + v« v erernrenrmnetnmemeeuneineeneinienaenneennes 11
1.5 Problemus s e sms s s ome s um s 506 555 o 00 & 556 5 505 5 Si9d § 500 s 315 5 3316 5 655 § 57550 § 58 3imig 12

Chapter 2 Background in Analysis and Probability ---------cc-vovnenn 13
2.1  Euclidean BHRoe- s «o« v s suyswessmewus s e s ome s e s 56 s 8Es s 56 8 238 288 w59 69 13
2.2 Hilbert, Banach and metric SPaces -« -« ««««« -« vveeeemmueeraiueeeaas 14
2.3 TAYIOT EXPADEIGIIE: = « oiv + w0+ 500 00 o sis s saia a0+ oi0m 5 e o 2101280 4 478 5 miw s wia 0 4 15
2.4 Improper integrals and Cauchy principal values - ---««---cvoveeeeenannnn 16
2.5 Some useful inequalities:««««s-setcossosnnnioontnosionnonacnsontansns 18

2.5.1 Young’s inequality -+« -« +vesrnrrneenataati i 18
2.5.2 Gronwa,ll lnequa.llty ................................................ 18
2.5.3 Cauchy-Schwarz inequality =+« =+« v+t errrrrremeiaaiiiniiiii., 19
2.5.4 Holder inequality -+« +errrrremnrmiai i 20
2.5.5 Minkowski lnequa.llty .............................................. 20
2.6 Holder spaces, Sobolev spaces and related inequalitieg- -« «-----ovenenn 21
2T Probability BPRLEs « - =w» « voe ove s e st o mos sme s wiws winsome s imy g wiss owe 25
2.7.1 Scalar random VATiables: -« =+t rcerrrnrtttittatete ittt 26
2.7.2 RANAOM VECEOTS <+ +++ ++ s v rrrrrrreeeneeeeeaneaeeeeeeeeeeeeenaeneens 27
273 Gaussian random Variab]es ......................................... 29
2.7.4 Non-Gaussian random variables . - === --«creeeeeeermmmeeerennineeenns 30
2.8 StOChASLIC PrOCESSES ==+ ¢+ s s osssansvsssssssnsnansassassssasnsssissns 33
2.9 CONVELEENCE COMCEPLS: ++ +o o v s ws siss s sis s stanssinsasnnssnsssssiasansss 35
D10 Slations s s v s ows s e s swsevns oo s mes @ psssme e 6n 8 s0ae K6y PR s s E s wis 36
T I o3 e o) o T 38

Chaplor 8 THORGE. : »om « co v » on e oiecs womorsiaon g ammgarase = wiaes i = aomse e Bocacawss o o  « e 41

3.1 BIOWIIAN IMIOTIOM = <+« o+ vt e entnennennmnanenenenaenenaenenaenenaennns 41
3.1.1 Brownian motion in RY ««-ccrrerrmmmineie ittt 42

3.1.2 Brownian motion in R™ -« -« ««+cssseeeeemmannnreeeneanneeenannnnesns 46



vi Contents
3.2 What is Gaussian White TOISE « =« =« v verrenemenaeieeniaenaeaeeenen. 47
3.3* A mathematical model for Gaussian white noise «« -+« cvevevienen. 48

3.3.1 'Generalized Aerivatives =« s« ses s o st nes s seanssssssmssansssns s 48
3.3.2 Gaussian White NoiSe =« + == s vttt ittt it 49
B4 SIIULALION -+ + v v v v v v e e e e e et et e e e 592
0 PO LEIS 55 55 5 55 5 8 i 4 4.5 6 855 5.0 K5 M R i) 5 i = sl 5 S SE b8 St 3 e B s 2 54

Chapter 4 A Crash Course in Stochastic Differential Equations:------ 57
4.1 Differential equations With NOISe « -« « -« ««wwevvmmumeemuueuumminnne.. 57
4.2 Riemann-Stieltjes INteGration « -« «««««««ewveemmmmmeeeuieiiiineo.. 58
4.3 Stochastic integration and stochastic differential equations -« -«««------- 59

43 1 Motivation ........................................................ 59
4.3.2 Deﬁnition Of It6 integral ........................................... 61
4.3.3 Practical Calculations .............................................. 62
434 StratonOViCh integral .............................................. 63
43‘5 Examples ......................................................... 64
4.3.6 Properties of It6 inbegrals -« -« «« v vreererrermriitiaiiiii., 67
4.3.7 Stochastic differential equations « -+« -+« -+« rerrrieraiii 69
4.3.8 SDEs in engineering and science literature-««--«««-cvrreriieiaen 70
4.3.9 SDEs with two-sided Brownian motions « -« -« eteerararaiiiii. 70
A4 THO’S FOTTULA -+« « « v v v v v e e e m e te et ettt e et e et e 70
4.4.1 Motivation for stochastic chain rules -« -« rerrrrrerareairaene .. 70
4.4.2 Ttd’s formula in SCa.lar CASE * " ** " s st tsoressnutsatansanssanssssanannsns 71
4.4.3 Tt6's formula in VECHOT CASE -+ + s s ssssnsnnnsnnennnnenesinnnsnsns 74
4.4.4 Stochastic product rule and integration by parts -« ««--cooeereaenn. 76
4.5 Linear stochastic differential equations -« «-««-voveveerieeeiiiiin 77
4.6 Nonlinear stochastic differential equations:---«««--ocereverreriin... 82
4.6.1 Existence, uniqueness and smoothness «« -+« vrrreeoreeeiiaan. 82

4.6.2 Probability measure P* and expectation E* associated with an SDE - - - 83

4.7 Conversion between It6 and Stratonovich stochastic differential

EQUALIOIIS « =+ + # + ot v s s st e am ettt ettt e 84
AT.1 Scalar SIS o5 5 o055 o/ s 5@ ss Svs s @0 55 a5 405 0 o 5§ 5085 50 08 A6 § 0805 8 8 4 5 473 4 538 84
4.7.2 SDE Systems:-«««-ccesrrererettitiitiiitiiiiiitiiitiiitiann. 85
4.8 Tmpact of noise 0N dyNAIMICS -+« « - v v rrrrrrrrerermeeie e, 86
4.9 SEMIULAGION -+« = v v v v e m e v e e e et e e e e e 88
A N0 Problerms ss e s i sns s 5stms oot one a5 s we Fams 658 5055w 0E 68 uE 89

Chapter 5 Deterministic Quantities for Stochastic Dynamics--------- 93



Contents vii

5.1 MOINENtS s cvvererereensusnttanenesieenssseasensssstasnssnsansnsansenas 94
5.2 Probability density functions:««««««««ssserrriiiiiiiiiiiii 96
5.2.1 Scalar Fokker-Planck equations -« « -« -« -« seesremrmatmmmonmoneo.. 97
5.2.2 Multidimensional Fokker-Planck equations «--------rcrrreeeeernnnn. 99
5.2.3 Existence and uniqueness for Fokker-Planck equations:««««««««-+--+- 102

5.2.4 Likelihood for transitions between different dynamical regimes under

UNCETAINEY < + + + + = v se s e et e eremnuuniesseettanuiiiiisieesesaannas 104
5.3 Most probable phase POTtTaAits <« ««« =« xrerrsrrrrurmrermeiiiieeeeaans 104
5.3.1 Mean phase portraits::--:ccrerrrrrrrraiiiiiiiiiiiiii 104
5.3.2 Almost sure phase POTtraits - s cesevrrreeer ittt 105
5.3.3 Most probable phase POTtraits -« « -« -« ==« xeeermmmmmnaneeeaeaaiois 105

5.4 MEAI EXIt LIIIE <+« <« < v+ v v v vrermeenmnanemaretneonraeesenenennenannnns 110
5.5 Escape probability -« srreeeeminans S B S § B NEE § S SRS A 115
B8 Problems : s sos s s s s ¢ a5 < 03 & s s 56 & 5656 ¢ 6% § 5008 3 5055 065 5 5§ 96 E B8 F S0 121
Chapter 6 Invariant Structures for Stochastic Dynamics:------------- 125
6.1 Deterministic dynamical SYSEEIMIS - < v v e 126
6.1.1 Concepts for deterministic dynamical systems « -« -«+ocrvereeeeennn. 126
6.1.2 The Hartman-Grobinan theOrem « -« <« « =+« =« o eeesesnseonssessons 128
6.1.3  THIVATIARE SEEG ~  =v = v+ vio o e o s mio s sinn s oo e ain o simia s sins oiwiosaimesioinsoms 128
814 Differentiable Taniilolii: o s« 55 6% s aios s o s 2643 605 865 a8 ) 58558553 129
6.1.5 Deterministic invariant manifolds -« «++-ecrreverreniiiin 131

6.2 Measurable dynamical SyStems: <« =« xsemmmennnnniniiiiiiias 139
6.3 Random dynamical SyStems: <« ««««««xsseemmmmmmmmmmniaa, 140
6.3.1 Canonical sample spaces for SDEs - <+« troverrrrrreriireieen. 141
632 Wieﬂer Shift ..................................................... 142
6.3.3 Cocycles and random dynamical systems -« -« «ccreeenenenanan. 143
6.3.4 Examples of cocycles -« «««««ceeeevees S8 BiELS § R S RE § E § S E REE § BE 146
6.3.5 Structural stability and stationary orbits:««-«+seeeeeiieiiiiiann 148

6.4 Linear stochastic dynamics ««««««««=«rrererrreeremmriiiii... 150
6.4.1 Oseledets’ multiplicative ergodic theorem and Lyapunov exponents - - - 150
6.4.2 A stochastic Hartman-Grobman theorem -« creeereeeeiannnn 157
6.5% Random invariant manifoldg -« -« «« ecrreremrmeemmimieinieneenann, 159
6.5.1 Definition of random invariant manifolds -« ««««+soevverrerneeeann 159
6.5.2 Converting SDEs t0 RDES -« =+« eertuanniiintritiuminiiee. 160
6.5.3 Local random pseudo-stable and pseudo-unstable manifolds- -« -+« -« 163

6.5.4 Local random stable, unstable and center manifolds -« «««-«ccovtv 165



viii Contents

6.6 PrODLEIMIS - -« v v eernrneneeaea ettt et atat s araeaaaaaas 168
Chapter 7 Dynamical Systems Driven by Non-Gaussian Lévy

NI ot iomm sis = ¢ v 5155 sme » 55 s wwes @ s wi5s o Ths 96 5 w08 §906 £36S B3 (16788 50 6 3 175

7.1 Modeling via stochastic differential equations with Lévy motions------ 176

7.2 LéVY MOLIOIS  ++ v v v reemneneees sttt 177

7.2.1 Functions that have one-side limits « =+« «rvvrreerrvnnenrreeeene. 178

7.2.2 Lévy-Itd decompoOSItion =+« +« s+« snsnmseresessiniaaninnaeeeeans 179

7.2.3 Lévy-Khintchine formula- -« -« -+« ererermereamieriiiaii .. 180

72_4 BaSlc properties Of Lévy motions .................................. 181

7.3 a-stable Lévy MOtions « -+« rerrmmreeremmmiree e 183

731 Stable random Va.riables .......................................... 183

7.3.2 oa-stable Lévy motions in RE ««ccveereveriiiiiiiiiiiiiiii 191

7.3.3 a-stable Lévy motion in 1 I R R R I I 197

7.4 Stochastic differential equations with Lévy motions « -« «-covoveveeenn. 200

7.4.1 Stochastic integration with respect to Lévy motions -« «+x«tvereenees 200

7.4.2 SDEs with L&vy mMOtIONS: « + + ==« v e e ererresssanmummnermeeeeminnn. 201

7.4.3 Generators for SDEs with Lévy motion « -« «+vcovevererneeerereen.. 205

7.5 MEAN EXit TIIIE =+ <+ v v v v errrenenennetetae ety 205

7.5.1 Mean exit time for a-stable Lévy motion « -« « -« «revrrernneeeneenens 207

7.5.2 Mean exit time for SDEs with a-stable Lévy motion « ««=««-vreveveee 210

7.6 Escape probability and transition phenomena -« «««-+ crveviaeiiaannn 213

7.6.1 Balayage-Dirichlet problem for escape probability -« ««+oeveovreens 213

7.6.2 Escape probability for a-stable Lévy motion «««««rexrerrrerereene. 217

7.6.3 Escape probability for SDEs with a-stable Lévy motion «+««««-«xv-- 219

7.7 Fokker-Planck equations «« -+« -« ««ssrrrrerremmmniuuuieeee . 220

7.7.1 Fokker-Planck equations in R «+«+vvvervrerriiin.. 221

7.7.2 Fokker-Planck equations in R™ <+« v vreerreremmmiiereenaanaian... 293

5D IORGTEIETELG oon  »oce # wows o oo 0 s mims o oxonns B i 4 5,80 8% 5 4 jos 6 § 508§ B0 S 800 § 50 FHI008 5 38 8 008 224

Hints and Solutions <5 s« ess s e s cnee sme ems s ons amssome s s ssee s sensssesss 298

Further Readings -« «cxrerrerrmrremiiin ittt 255

REEEIEIICES - <+« + =+ < v+ v v e et e et et et et e e 257

THACEIE - o wio + o oron 5 meocs 008 3 80k 5 Susis S 3 508§ SR 5 300 § 30005 6 908 o V16 8 W06 597 ¥ e & ik § 900 4 0 274

Color Pictures



Chapter 1

Introduction

Noisy fluctuations are abundant in complex systems. In some cases, noise is not
negligible, whereas in some other situations, noise could even be beneficial. It is
desirable to have a better understanding of the impact of noise on dynamical evo-
lution of complex systems. In other words, it becomes crucial to take randomness
into account in mathematical modeling of complex phenomena under uncertainty.

In 1908, Langevin devised a stochastic differential equation for the motion of
Brownian particles in a fluid, under random impacts of surrounding fluid molecules.
This stochastic differential equation, although important for understanding Brow-
nian motion, went largely unnoticed in the mathematical community until after
stochastic calculus emerged in the late 1940s. Introductory books on stochastic
differential equations (SDEs) include [8,88,213].

The goal for this book is to examine and present select dynamical systems con-
cepts, tools, and methods for understanding solutions of SDEs. To this end, we also
need basic information about deterministic dynamical systems modeled by ordinary
differential equations (ODEs), as presented in the first couple of chapters in one of
the references [110,290].

In this introductory chapter, we present a few examples of deterministic and
stochastic dynamical systems, then briefly outline the contents of this book.

1.1 Examples of deterministic dynamical systems

We recall a few examples of deterministic dynamical systems, where short time-scale
forcing and nonlinearity can affect dynamics in a profound way.

Example 1.1 A double-well system.

Consider a one-dimensional dynamical system & = 2 — z3. It has three equilib-
rium states, —1,0 and 1, at which the vector field z — 23 is zero. Observe that

<0, —-l<z<lorl<z<oo,
t=z—a*=z1-2%)¢ =0, z=-1,0,1,

>0, —oo<zr<-lor0<z<l.



