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I CHAPTER 1

Introduction

1.1 DEFINITION OF NONLINEAR SYSTEMS

In general, a nonlinear system is one that does not satisfy the superposition principle
or whose output is not directly proportional to its input. That is, a nonlinear system
is any problem where the variable(s) to be solved for cannot be written as a linear
combination of independent components. Since most economic, social, and many
industrial systems are inherently nonlinear in nature, where mathematical analysis is
unable to provide general solutions, nonlinear system problems, especially nonlinear
systems dynamics analysis and control problems for industrial systems, are of interest
to mathematicians, physicists, and engineers.

1.2 NONLINEAR SYSTEM DYNAMICS ANALYSIS AND CONTROL

Nonlinear systems control is the discipline that applies control theory to design sys-
tems with desired behaviors. It can be broadly defined or classified as nonlinear
control theory and application. It seeks to understand nonlinear systems dynamics,
using mathematical modeling, in terms of inputs, outputs, and various components
with different behaviors and to use nonlinear control systems design schemes to
develop controllers for those systems in one or many time, frequency, and com-
plex domains, depending on the nature of the design problem. As a result, control
of nonlinear systems is a multidisciplinary research field involving the synergistic
integration of mechanical and electrical engineering, computer science, and even bio-
logical engineering. Control of nonlinear systems will become mainstream consumer
products within the next decade, providing a significant growth opportunity for the
above-mentioned engineering systems. So far, there are several significant techniques
for analyzing nonlinear systems, for example, describing the function method, the
phase plane method, Lyapunov-based analysis, the singular perturbation method, the
Popov criterion, the center manifold theorem, the small-gain theorem, and passivity
analysis. Based on the above techniques, significant results were introduced extend-
ing to nonlinear feedback systems design and control. Some cornerstone control

Operator-Based Nonlinear Control Systems: Design and Applications, First Edition. Mingcong Deng.
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2 INTRODUCTION

methods, for example, Lyapunov function method, sliding-mode control method, and
nonlinear damping method, are proposed. In view of the input—output nature of the
nonlinear system concept itself, it seems useful to establish computer-oriented ap-
proaches to nonlinear control systems analysis and design. Addressing this problem,
the robust right coprime factorization technique of nonlinear operators, in addition to
the above significant techniques, which is based on real and complex variable theory,
has been a promising technique, where the operators can be either linear or nonlinear,
continuous time or discrete time, finite dimensional or infinite dimensional, and in
the frequency domain or time domain [1].

1.3 WHY OPERATOR-BASED NONLINEAR CONTROL SYSTEM?

As a basis for the possible next generation of control of nonlinear systems, the theoret-
ical concept of operator-based nonlinear control has been introduced in recent years.
In the operator-based nonlinear control system research approach, since the 1990s,
some researchers started with the operator-theoretic nonlinear control approach, and
mathematical background was provided. As for the development of the design prin-
ciple, it is forecasted that the operator-theoretic nonlinear control approach will be
applied significantly. As a result, research on operator-based nonlinear system con-
trol has great potential to the application for industry and daily life. However, the
nonlinear control system analysis design might be difficult and impossible because
of the complex uncertain nonlinearities. There was lack of a quantitative stability
result, which may guarantee stability and performance of the control system with the
uncertain nonlinearities. Addressing the above problem, this book aims to develop a
systematic methodology using operator-based design of nonlinear control systems.

1.4 OVERVIEW OF THE BOOK

This book concerns uncertain nonlinearity in this important research field. Starting
with major goals and reviews, the book gives a perspective as to how plants can
be modeled as operator-based plants. The primary objectives of this book are to
guide modeled plants to obtain robust right coprime factorization, provide state-of-
the art research on robust stability conditions, and discuss system output tracking
and fault detection issues for researchers working in this field. Considering the broad
set of the readers whom I would like to reach, I some applications are included
for a good understanding. The intent is to help beginning graduate students learn
several developments of operator-based nonlinear control system design. This book
also summarizes our understanding of the current trend and the likely future of
the operator-theoretic approach reported in latest research results on several frontier
problems. Motivated by the above consideration, a detailed analysis of nonlinear
feedback control systems based on an operator-theoretic approach is considered in
this book. Based on the operator theory, nonlinear feedback control systems can be
designed and applied, that is, operator-based nonlinear feedback control using robust
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right coprime factorization [ 1-2, 8]. For instance, application of the proposed designs
to networked control processes is considered and vibration control using piezoelectric
actuators, ionic polymer metal composite actuators, and shape memory alloy actuators
has been successfully conducted. Meanwhile, a fault detection technique based on
an operator-theoretic approach is also developed. In describing these aspects of the
operator-based nonlinear control system, it is assumed that the reader is familiar
with Banach spaces, linear operator theory, and right coprime factorization and has
some elementary knowledge of nonlinear control, found in the excellent text by de
Figueiredo and Chen [1]. Some of the work described in this book is based upon a
series of recent publications by the author.
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I CHAPTER 2

Robust Right Coprime Factorization for
Nonlinear Plants with Uncertainties

2.1 PRELIMINARIES

This chapter gives some basic definitions and notation needed throughout this book
and some important remarks necessary in describing the problems to be investigated
later.

2.1.1 Definition of Spaces

In mathematics, a space is a set with some added structures. There are two basic
spaces: linear spaces (also called vector spaces) and topological spaces, where linear
spaces are of algebraic nature and topological spaces are of analytic nature. There
are three types of linear spaces; real linear spaces (over the field of real numbers),
complex linear spaces (over the field of complex numbers), and more generally linear
spaces over any field. The discussion in this book is based on linear spaces.

2.1.1.1 Normed Linear Space A space X of time functions is said to be a
vector space if it is closed under addition and scalar multiplication. The space X is
said to be normed if each element x in X is endowed with norm || - || x, which can
be defined in any way so long as the following three properties are fulfilled:

1. ||x|| is a real, positive number and is different from zero unless x is identically
zZero,

2. llax|l = lalllx|l, and
3.l +x2ll < lxgll + 2l

It should be mentioned that every normed space is a linear topological space.

2.1.1.2 Banach Space A Banach space is defined as a complete normed space.
This means that a Banach space is a vector space X over the real or complex numbers

Operator-Based Nonlinear Control Systems: Design and Applications, First Edition. Mingcong Deng.
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6 ROBUST RIGHT COPRIME FACTORIZATION FOR NONLINEAR PLANTS WITH UNCERTAINTIES

with a norm || - || such that every Cauchy sequence (with respect to the metric
d(x,y) = |lx — y|) in X has a limit in X. Many spaces of sequences or functions are
infinite-dimensional Banach spaces.

2.1.1.3 Extended Linear Space Let Z be the family of real-valued mea-
surable functions defined on [0, co), which is a linear space. For each constant
T € [0, 00), let Py be the projection operator mapping from Z to another linear
space, Zr, of measurable functions such that

t t<T
fr@) = Pr(f)@) = ({( I B (2.1
t>T

where fr(tr) € Zr is called the truncation of f(r) with respect to 7. Then, for any
given Banach space X of measurable functions, set

X={feZ: |frlx <ooforall T < oc} 2.2)

Obviously, X¢ is a linear subspace of Z. The space so defined is called the extended
linear space associated with the Banach space X.

It should be noted that the extended linear space is not complete in the norm in
general and hence not a Banach space, but it is determined by a relative Banach space.
The reason to use the extended linear space is that all the control signals have finite
time duration in practice, and many useful techniques and results can be carried over
from the standard Banach space X to the extended space X¢ if the norm is suitably
defined.

2.1.2 Definition of Operators

Let X and Y be linear spaces over the field of real numbers, and let X, and Y, be
normed linear subspaces, called the stable subspaces of X and Y, respectively, defined
suitably by two normed linear spaces under a certain norm X, = {x € X : |x|| < oo}
and Y; ={y e Y : |yl <oo}.

2.1.2.1 Linear and Nonlinear Operator let(Q : X — Y be anoperator map-
ping from X to Y, and denote by D(Q) and R(Q), respectively, the domain and range
of Q. If the operator Q : D(Q) — Y satisfies the addition rule and multiplication
rule

Q :ax)+bx; — aQ(x1) +bQ(xy)
for all x;, xo € D(Q) and all a, b € C, then Q is said to be linear. Otherwise, it is

said to be nonlinear. Since linearity is a special case of nonlinearity, in what follows
“nonlinear” will always mean “not necessarily linear” unless otherwise indicated.



PRELIMINARIES 7

2.1.2.2 Bounded Input-Bounded Output (BIBO) Stability Let Q be a
nonlinear operator with its domain D(Q) C X° andrange R(Q) C Y. If Q(X) C Y,
Q is said to be input—output stable. If O maps all input functions from X; into the
output space Y, that is, Q(X;) C Y;, then operator Q is said to be BIBO stable or
simply stable. Otherwise, if Q maps some inputs from X to the set Y*\Y; (if not
empty), then Q is said to be unstable. Any stable operators defined here and later in
this book are BIBO stable.

2.1.2.3 Invertible An operator Q is said to be invertible if there exists an oper-
ator P such that

QoP=PoQ=1 (2.3)

where P is the inverse of Q and is denoted by Q~!, I is the identity operator, and
Q o P [or simply Q(P(-)) or Q P] is an operation satisfying

D(Q o P) = P (R(P)ND(Q)) 2.4)

2.1.2.4 Unimodular Operator LetS(X,Y) be the set of stable operators map-
ping from X to Y. Then, S(X, Y) contains a subset defined by

UX,Y)={M: M e S(X,Y), M isinvertible with M~! € S(¥, X)} (2.5)
Elements of U/(X, Y) are called unimodular operators.

2.1.2.5 Lipschitz Operator For any subset D C X, let F(D, Y) be the family
of nonlinear operators Q such that D(Q) = D and R(Q) C Y. Introduce a (semi)-
norm into (a subset of) F(D, Y) by

0 - 0
101 = sup 120 = 2O,

v.ieD ”)C —x~||x

Y#X

if itis finite. In general, it is a seminorm in the sense that || @|| = 0 does not necessarily
imply Q = 0. In fact, it can be easily seen that | Q| = 0 if Q is a constant operator
(need not to be zero) that maps all elements from D to the same element in Y.

Let Lip(D, Y) be the subset of (D, Y) with its all elements Q satisfying || Q| <
oo. Each Q € Lip(D, Y) is called a Lipschitz operator mapping from D to Y, and the
number || Q|| is called the Lipschitz seminorm of the operator Q on D.

Itis evident that a Lipschitz operator is both bounded and continuous on its domain.
Next, a generalized Lipschitz operator is introduced which is defined on an extended
linear space.
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2.1.2.6 Generalized Lipschitz Operator Let X¢ and Y° be extended linear
spaces associated respectively with two Banach spaces X and Y of measurable
functions defined on the time domain [0, 00), and let D be a subset of X¢. A nonlinear
operator Q : D — Y is called a generalized Lipschitz operator on D if there exists
a constant L such that

lle)lr — 1@z |, < Lilxr — Zrllx (2.6)

forall x, ¥ € D and for all T € [0, co). Note that the least such constant L is given
by the norm of Q with

1QlILip == Q)Y + 112l
= [ Qo)lly
2 mp mp lte)lr — Q@I |, -

Tel0,00) *ieD lxr — Xrllx
Xy #EIT

for any fixed xp € D.
Based on (2.7), it follows immediately that for any 7' € [0, 00)

[1e)1r — 1Q®)]r|, < IQllllxr — Frllx
< 1QllLipllxr — Erllx (2.8)

Lemma 2.1 [1] Let X° and Y* be extended linear spaces associated respectively
with two Banach spaces X and Y, and let D be a subset of X°. The following family
of Lipschitz operators is a Banach space:

Lip(D, Y¢) = {Q :D — Y| QllLip < o0 0on D} (2.9)

Proof First, itis clear that Lip(D, Y¢) is a normed linear space. Hence, it is sufficient
to verify its completeness.
Let Q,, be a Cauchy sequence in Lip(D, Y¢)suchthat || Q,, — Q,|| = Oasm,n —
00. We need to show that |Q,, — Q|| — O for some Q € Lip(D, Y¢) asn — oo.
Let T € [0, 0o) be fixed. For any ¥ € D, by definition of the Lipschitz norm with
an xo € D, we have

”[(Qm - Qn)(f)]T - [(Qm - Qu)(x())]T ”y
< 1Qm = Qully, |57 = [xolr (2.10)



