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Sea-Level Science

Understanding Tides, Surges, Tsunamis
and Mean Sea-Level Changes

Sea levels change for many reasons and on many timescales, and extreme sea
levels can result in catastrophic coastal flooding, such as the Katrina storm
surge in 2005 or the Sumatra tsunami in 2004. As global sea level rises, and
coastal populations increase, understanding sea-level processes becomes key
to plan future coastal defence effectively.

Ocean tides, storm surges, tsunamis, El Nifo and the sea-level rise caused
by climate change are among the processes explained in this book. Building on
David Pugh’s classic graduate-level book Tides, Surges and Mean Sea-Level,
this substantially updated and expanded full-colour book now incorporates
major recent technological advances in the areas of satellite altimetry and
other geodetic techniques (particularly GPS), tsunami science, measurement
of mean sea level and analyses of extreme sea levels. The authors, both leading
international experts, discuss how each surveying and measuring technique
complements others in providing an understanding of present-day sea-level
change and more reliable forecasts of future changes.

Giving the how and the why of sea-level change on timescales from hours
to centuries, this authoritative and exciting book is ideal for graduate students
and researchers working in oceanography, marine engineering, geodesy,
marine geology, marine biology and climatology. It will also be of key interest
to coastal engineers and governmental policy-makers.

David Pugh is a marine science consultant, also holding positions as
Visiting Professor at the University of Liverpool and Visiting Scientist at the
National Oceanography Centre (NOC). His research specialises in tides,
surges, mean sea level, coastal management and climate change, together with
marine economics and the history of sea level. After a career in science and
science management with the UK Natural Environment Research Council,
Dr Pugh served as President of the Intergovernmental Oceanographic
Commission (IOC) of UNESCO, 2003-7. He had previously been Director of
the Permanent Service for Mean Sea Level and Founding Chairman of the [OC
Global Sea Level network, GLOSS. Dr Pugh has authored two books and
recently co-edited Troubled Waters: Ocean Science and Governance
(Cambridge University Press, 2010) published for the 50th anniversary of the
IOC. He has been awarded an OBE for services to marine sciences.

Philip Woodworth is an Individual Merit Scientist in the Natural
Environmental Research Council based at the NOC in Liverpool, and also a
Visiting Professor at the University of Liverpool. He has been Director of the
PSMSL and Chairman of GLOSS. Dr Woodworth has published extensively



on tides, sea-level changes and geodesy, including co-editing Understanding
Sea-Level Rise and Variability (Wiley Blackwell, 2010), and has been involved
in each IPCC research assessment. His awards include the Denny Medal of
IMAREST, the Vening Meinesz Medal of the European Geosciences Union,
the 50th Anniversary Medal of the IOC, and a minute share in the 2007
Nobel Peace Prize awarded to the IPCC. He was awarded an MBE in 2011 for
services to science.

‘Governments and their planners responsible for management and defences
against coastal flooding need the best science to identify present and future
risks. This authoritative new book gives an excellent and comprehensive
account of the science which underpins our understanding of sea levels, and its
practical application on our changing planet.’
Wendy Watson-Wright, Executive Secretary,
Intergovernmental Oceanographic Commission of UNESCO

‘Professors Pugh and Woodworth’s book is timely, authoritative, and will
certainly have a prominent place on my bookshelf. It is a unique resource for
teachers of upper undergraduate to graduate level courses, and will also be
used often by sea-level researchers, coastal engineers and planners, and by
many others with an interest in sea level.’
Gary T. Mitchum, Professor and Associate Dean,
College of Marine Science, University of South Florida, USA,
and Chair of the Global Sea Level Observing System



Preface

We spend much of our time studying sea-level science, a
wide-ranging and constantly fascinating subject. We
analyse data, read and write papers, and present findings
at conferences where there are people in the same sea-
level community as us. However, every so often we get to
meet other people who have been exposed to this subject
in a more personal way: someone who lost relatives in
the 1953 North Sea storm surge, another who lost every-
thing more than once in Bangladesh floods, a colleague
who survived the 2004 Sumatra tsunami.

We remember at a conference of sea-level experts
in the Maldives some years ago a small boy holding a
homemade poster declaring ‘Down with sea-level rise’,
as he feared for the future of his country. Concern
about possible global warming and sea-level rise has
rarely been expressed as simply or as effectively. These
examples remind us that the results of our work are
important, not just for the scientific papers that are
produced, but also for many practical reasons, which
somehow we find reassuring.

This book is an integrated account of sea level and
the physical reasons why it is endlessly changing: tides,
weather effects, tsunamis, long-term climate change,
and even changes in the solid Earth. The chapters
cover many fields: oceanography, geology, geodesy,
climate change, coastal engineering, data management
and others.

It takes as its starting point David Pugh’s 1987
Tides, Surges and Mean Sea-Level, which is now long
out of print, and significantly out of date. That book
was published at a time of renaissance for sea-level
science — a rebirth driven by the technology of satel-
lites and ever more powerful computers; and by fun-
damental public concerns about the effects of climate
change and potential increased coastal flooding. These
concerns have been reinforced by recent catastrophic
tsunami and storm surge events.

This new account has roughly three components.
The first component consists of six chapters that follow
the 1987 book’s treatment of tides: instruments, forces,
analysis and dynamics. In the second component,

spanning Chapters 7 to 11, we review the major new
developments in sea-level science: weather effects, tsu-
namis, satellites and geodesy, and global sea-level
changes related to climate change. Our discussion of
the latter can be read alongside the recently published
Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, which provides even more facts and
figures on sea level and climate.

In the third component, containing the final two
chapters, we discuss more generally how humankind
has been affected by changes in sea level in the past,
and seeks to make practical arrangements for changes
in the future. It is undoubtedly the case that changes in
sea level affect the way we live our lives today, and they
will become increasingly important in the future. Sea-
level science matters to us all.
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Introduction

Prospero: “. . .ye that on the sands with printless foot
Do chase the ebbing Neptune and do fly him

When he comes back’

Shakespeare, The Tempest

Sea levels are always changing, for many reasons.
Some changes are rapid while others take place very
slowly. The changes can be local, or extend globally.
This book is about the science of these changes.

In this first chapter we outline what constitutes sea-
level science. A brief account of the development of
scientific ideas is followed by an outline of how sea
levels are affected by a wide range of physical forces
and processes. Finally we give some basic definitions,
and discuss the fundamental statistics of sea levels as
time series.

1.1 Background

Living by the sea has many benefits. Statistics show
that about half the global population lives within
100 km of the sea. Most of the world’s largest cities
are on or near the ocean. Ninety per cent of all global
trade is carried by sea. The coast offers possibilities of
both trade and travel, and increasingly of water-based
recreation. Natural geological processes have often
conspired to create flat and fertile land near to the
present sea level, to which people are drawn or driven
to settle.

There are risks. Throughout history, humankind
has adjusted and coped with changing sea levels: the
ebb and flow of the tides, storm flooding and, for some
vulnerable places, the dangers of being inundated by a
tsunami. However, as our cities and our patterns of
coastal development become more intricate, popu-
lated and interdependent, we become more and more
vulnerable to disasters. The rural response of driving
cattle to higher ground for the duration of a flood is
much easier than the urban complexity of rebuilding
complete sewage and transport systems. In extreme

cases flooding, with disastrous long-term consequen-
ces, may destroy the delicate infrastructure of coastal
cities.

Books dealing with the science of sea levels and
tidal phenomena are comparatively rare. However,
unified treatments of general interest are found in
older specialist books [1, 2, 3], and in more recent
publications [4, 5, 6]. Accounts are also found in
more general books on oceanography, especially the
second volume of Defant’s Physical Oceanography [7].
Defant and some other experts have also written more
popular accounts [8], which are useful introductions,
though sometimes hard to find.

1.2 Early ideas and observations

The link between the Moon and tides was known from
very early times. Sailors had a very practical need for
developing this understanding, particularly for their
near-shore navigation in the small ships of those times.
A more scientific explanation of the links between
tides and the movements of the Moon and Sun evolved
much later. Many eminent scientists have been
involved in this scientific development.

Even 2000 years ago, historical records show an
impressive collection of observed tidal patterns [9].
However, the ideas advanced by the philosophers of
that time, and for the following 1600 years, to explain
the connection between the Moon and the tides were
less valid. Chinese ideas supposed water to be the
blood of the Earth, with tides as its beating pulse,
with the Earth breathing causing the tides. Arabic
explanations supposed the Moon’s rays to be reflected
off rocks at the bottom of sea, thus heating and
expanding the water, which then rolled in waves
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towards the shore. One poetic explanation invoked an
angel who was set over the seas: when he placed his
foot in the sea the flow of the tide began, but when he
raised it, the tidal ebb followed. During this long
period there was a decline in critical thought, so that
the clear factual statements by the classical writers
were gradually replaced by a confusion of supposed
facts and ideas. One notable exception was the
Venerable Bede, a Northumbrian monk, who
described around AD 730 how the rise of the water
along one coast of the British Isles coincided with a fall
elsewhere. Bede also knew of the progression in the
time of high tide from north to south along the
Northumbrian coast.

Johannes Kepler (1596-1650), while developing
laws to describe the orbits of the planets around the
Sun, suggested that the gravitational pull of the Moon
on the oceans might be responsible for tides. Isaac
Newton (1642-1727) took this idea much further.
Almost incidentally to the main insights of his
Principia published in 1687 (the fundamental laws of
motion, and the concept of universal gravitational
attraction between bodies), Newton showed why
there are two tides a day, and why the relative positions
of the Moon and Sun are important. His contempo-
rary, Edmond Halley (1656-1742, Figure 1.1), made
systematic measurements at sea and prepared a map of
tidal streams in the English Channel. Halley had
encouraged Newton’s work, paid for the publication
of the Principia himself, and prepared an account of
the tides based on Newton’s theories [10]. Many other
scientists extended and improved Newton’s funda-
mental understanding, but it remains the basis for all
later developments.

Daniel Bernoulli (1700-1782) published ideas
about an Equilibrium Tide, which we shall look at in
detail in Chapter 3. The Marquis de Laplace (1749-
1827) developed theories of a dynamic ocean response
to tidal forces on a rotating Earth, and expressed them
in periodic mathematical terms. Thomas Young
(1773-1829), while developing his theory on the
wave characteristics of light, showed how the propa-
gation of tidal waves could be represented on charts as
a series of co-tidal lines.

The first operational automatic tide gauge and
stilling-well system for measuring sea levels was
installed at Sheerness in the Thames Estuary in 1831,
to provide continuous sea-level data. These measure-
ments in turn stimulated a new enthusiasm for tidal
analysis and the regular publication by British

EDMVND. HALLEIVS LL.D.
GEOM.PROF. SAVIL, & R .S .SECRET.

Figure 1.1 Edmond Halley (1656-1742) assisted in the publication
of Newton's Principia, the basis for tidal science, and also led the first
systematic tidal survey, of currents in the English Channel. © The
Royal Society.

authorities of annual tidal predictions to assist mari-
ners to plan safer navigation. Even before the official
tables, tidal predictions were published commercially,
sometimes based on undisclosed formulae, for exam-
ple those of the Holden family in northwest England
(11].

Lord Kelvin (1824-1907) showed in detail how
tides could be represented as the sum of periodic
mathematical terms, and promoted a machine
(Figure 4.12) that applied this idea for tidal predic-
tions. He also developed mathematical equations for
the propagation of tidal waves on a rotating Earth, in a
form known as Kelvin waves. In 1867 the Coast Survey
of the United States took responsibility for the annual
production of official national tide tables. By the
beginning of the twentieth century, most major mar-
itime countries around the world began to prepare and
publish regular annual official tide tables.

Meanwhile, other factors that influence sea-level
changes were being investigated. James Clark Ross
(1800-62) made sea-level measurements when



trapped in the ice during the Arctic winter of 1848-9,
and confirmed the already-known link between higher
atmospheric pressures and lower sea levels. Earlier
Ross had helped establish Tide Gauge Bench Marks
in Tasmania and the Falkland Islands, as datums for
scientific mean sea level studies during his voyage of
exploration in the Southern Ocean. Establishing these
fundamental fixed datum levels was done on the advice
of the German geophysicist Alexander von Humboldt
(1769-1859).

Harris [9] gives an extensive late-nineteenth-century
historical account of early tidal ideas; Wheeler [12] gives
a contemporary hydraulic engineering perspective.
More recently, Cartwright [13] gives a comprehensive
analysis of the scientific history of tides. A more general
discussion of sea-level science and its place in the overall
development of marine science is given in Deacon [14];
Reidy [15] describes the role of the British Admiralty in
tidal science and its application.

1.3 Tidal patterns

Before the development of appropriate instrumenta-
tion, sea-level observations were confined to the coast
and were not very accurate. Modern measuring sys-
tems, many of which will be described in the next
chapter, have enabled a systematic collection of sea-
level data which shows that regular water movements
are a feature on all the shores of the oceans and of their
adjacent seas. These regular tidal water movements are
seen as both the vertical rise and fall of sea level, and as
the horizontal ebb and flow of the water.

The tidal responses of the ocean to the forcing of
the Moon and Sun are very complicated and tidal
features vary greatly from one site to another. The
two main tidal features of any sea-level record are the
tidal range, measured as the height between successive
high and low levels, and the period, the time between
one high (or low) level and the next high (or low) level.
Figure 1.2a, which shows the tides for March 2043 at
five sites, clearly illustrates this variability. Figure 1.2b
shows the lunar variables for the same month. The
details of the relationships between the tides and the
movements of the Moon and Sun are developed in
Chapter 3. In this section we describe the observed
sea-level variations at these five sites and relate them to
the astronomy in a more general way.

We can now look in detail at Figure 1.2a. In most of
the world’s oceans the dominant tidal pattern is similar
to that shown for Bermuda in the North Atlantic, and
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for Mombasa on the African shore of the Indian
Ocean. Each tidal cycle takes an average of 12 hours
25 minutes, so that two tidal cycles occur for each lunar
or moon day (every 24 hours 50 minutes). Because
each tidal cycle occupies roughly half of a day, this
type of tide is called semidiurnal. Semidiurnal tides
have a range that typically increases and decreases
cyclically over a 14-day period. The maximum ranges,
called spring tides, occur a few days after both new and
full Moons (syzygy, when the Moon, Earth and Sun are
in line), whereas the minimum ranges, called neap
tides, occur shortly after the times of the first and last
quarters (lunar quadrature). The relationship between
tidal ranges and the phase of the Moon is due to the
additional tide-raising attraction of the Sun, which
reinforces the Moon’s tides at syzygy, but reduces
them at quadrature. The astronomical cycles are dis-
cussed in detail in Chapter 3, but Figure 1.2b shows
that when the Moon is at its maximum distance from
the Earth, known as lunar apogee, semidiurnal tidal
ranges are less than when the Moon is at its nearest
approach, known as lunar perigee. This cycle in the
Moon’s motion is repeated every 27.55 solar days.
Maximum semidiurnal ranges occur when spring
tides (syzygy) coincide with lunar perigee [3], whereas
minimum semidiurnal ranges occur when neap tides
(quadrature) coincide with lunar apogee. Globally,
semidiurnal tidal ranges increase and decrease at
roughly the same time everywhere, but there are sig-
nificant local differences. The maximum semidiurnal
tidal ranges occur in semi-enclosed seas. In the Minas
Basin in the Bay of Fundy (Canada), the semidiurnal
North Atlantic tides at Burncoat Head have a mean
spring range of 12.9 m. Equally large ranges are found
in Ungava Bay, northeast Canada (see Chapter 5). The
mean spring ranges at Avonmouth in the Bristol
Channel (United Kingdom) and at Granville in the
Gulf of St Malo (France) are 12.2 m and 11.3 m respec-
tively. In Argentina the Puerto Gallegos mean spring
tidal range is 10.4 m; at the Indian port of Bhavnagar in
the Gulf of Cambay it is 8.8 m; and the Korean port of
Inchon has a mean spring range of 8.4 m. More gen-
erally, however, in the main oceans the semidiurnal
mean spring tidal range is usually less than 2 m.
Close examination of the tidal patterns at
Bermuda and Mombasa in Figure 1.2a shows that at
certain times in the lunar month the high water levels
are alternately higher and lower than the average.
This behaviour is also observed for the low water
levels, the differences being most pronounced when
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Figure 1.2 (a) Tidal predictions for March 2043 at five sites that have very different tidal régimes. At Karumba, Australia, the tides are diurnal, at
San Francisco, United States, they are mixed, whereas at both Mombasa, Kenya, and Bermuda, semidiurnal tides are dominant. The tides at
Courtown, Ireland, are strongly distorted by the influence of the shallow waters of the Irish Sea.

the Moon’s declination north and south of the equa-
tor is greatest. The differences can be accounted for
by a small additional tide with a period close to one
day, which adds to one high water level but subtracts
from the next one. In Chapters 3 and 4 we shall
develop the idea of a superposition of several partial

tides to produce the observed sea-level variations at
any particular location.

In the case of the tide at San Francisco, the tides
with a one-day period, which are called diurnal tides,
are similar in magnitude to the semidiurnal tides. This
composite type of tidal régime is called a mixed tide,



