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PREFACE

A mathematical model of a physical system provides the engineer with
the insight and intuitive understanding generally required to make effi-
cient system design changes or other modifications. A simple formula is
often worth a thousand numerical simulations, and can reveal connec-
tions between different control parameters that might otherwise take
hours or weeks to deduce from a computational analysis. This book is
intended to supply the undergraduate engineer with the basic math-
ematical tools for developing and understanding such models. A firm
grasp of the topics covered will also enable the working engineer (edu-
cated to bachelor’s degree level) to understand, write and otherwise
make sensible use of technical reports and papers.

The book was orginally written for students taking the Boston
University senior level, one-semester course in engineering mathematics
for mechanical and aerospace engineers. This course marks the final
exposure of these students to formal mathematical training prior to
graduation, and includes material taken principally from Chapters 1-4.
The intention is to consolidate earlier courses in ordinary differential
equations, vector calculus, Fourier series and transforms, and linear
algebra, and to introduce more advanced topics, including complex vari-
able theory, partial differential equations and elementary generalised
functions leading to Green’s functions. The book has also formed the
basis of a review course for first-year engineering graduate students. It
is not possible to cover in a one-semester class all subjects with which

ix



X Preface

an ‘educated’ engineer might reasonably be expected to be familiar;
additional topics are included in the text, mainly for reference, on
conformal transformations, special functions and variational methods.
However, an overriding objective has been compactness of presentation,
and to avoid the currently fashionable trend of attempting to achieve
encyclopaedic coverage with a text that typically runs to a thousand

Or Mmore pages.

M. S. Howe
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1

LINEAR ORDINARY
DIFFERENTIAL EQUATIONS

1.1 First-Order Equations

General form:

Z—i +plx)y =r(z), or y +plx)y=r(x), wherey = Z—i

Homogeneous equation ¥’ + p(x)y = 0.

Solve by separating the variables:
dy

y
Iny=— /])(.‘I))dl‘ + Cy

The general solution is y = Cle™ /P,

— /p(;r)d.r + (Cy, C = constant

C = e“' = arbitrary constant

This solution may also be derived by means of an integrating factor, as
described below for the inhomogeneous equation.
Example Find the general solution of ¢’ + %y = 0.

“dy

- /;‘172(i11?+C1,
Y g

1 .
ny=~-=2*+C
ny 31 + ()

.3
y=Ce 7.
3

If y =2 when 2 =0, then C =2 and y = 2¢~ 7.

1



2 Mathematical Methods for Mechanical Sciences

Inhomogeneous equation 3 + p(x)y = r(x).

This is solved by multiplying by the integrating factor f(z) = el pl@)de.

fy'+ foy= @ (y(:t)ef ”(m)d””) = r(x)e) P@)de
dx

y(;v)efp(m)d” = /T(;r)ef”(l')d‘” de +C

y = e—fp(:r,)dm / T(I)efp(z)dr dr + Ce—fp(a:)d:n
= particular integral

+ solution of the homogeneous equation

Example Find the general solution of y’ + x%y = x2.

1'3

2.
Integrating factor = el 7707 — oF

% (y(l)c%i) = p7g !

“’l.«

y(r)e% /IzerTS dr +C

3

x

y=1+Ce 3
3

Ify=2whenz=0,thenC=1landy=1+e 5.

Problems 1A

Find the general solution of:
1. y —4y =2z — 422, [y = 22 + Ce*"]
Cay +2y=4e". [y=(C+2")/a?
.y +2ytanz =sin?z. [y = Ccos®r + cos® z(tanx — z)]
. ¥ +ycotx = sin2x. [y = % sin? x + Ccose(‘x]

. sinzy —ycosx =sin2z. [y = 2sinzln(sinz) + Csinz]

. y'—}-%fi =e*. [y=C/22+ (1 -2/z+2/22)e”]
=1y +3y=22 [(z—1)3y=C+2°/5—2*/2+23/3]

2

3

4

5

6. zlnzy' +y=2Inz. [y=Ilnzr+C/Inzx]

7

8

9. (z+ 1)y + 2z —1)y=e2. [e2y=Cx+1)° - 1]
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10. Y + 2 =1sin(%). [y=-—cosL+ 2sin+ €]

1. 1-2*)y +2(y—a)=0. [y=a+C(1— 22)2]

12. ¥ = (1+cotz)y=0. [y=Ce"sinz

13. (1+22)y +ay=3z+323. [y=1+22+C(1+22)" 2]

14. sinzcoszy +y =cotz. [y= (C + Intanz)/tanz]

Solve:

15. y +2zy =4dx, y(0)=3. [y=2+ C—";Q]

16. y'coth2z =2y —2, y(0) =0. [y=1— cosh2z]

17. ¥ + ky=e7%%, y(0) =1. [y=(1+z)e ]

18. y' =a(y—g), y(0)=b. [y=g+(b—g)e™]

19. yy' = 2a, y(0) =0. [y* = dax]

20. yy' +z =0, y(0) =a. [2?+ % = a?]

2. gy + 2 =0, y(0) =b. [%+ % =1]

22. (z+1)y =y-3, y(0)=8. [y=>5xr+3§

23. 22y’ +y=0, y(1)=1. [zy®=1]

24. (1+a2%)y =y, y(0)=0. [y=i(tan™'z)?]

25. % 4+ 3i = sin2t, i = 0 whent = 0. [i = {sin(2t — @) + e * sina}/V13,
where tana = 2]

26. Water runs out through a hole in the base of a circular cylindrical tank at speed
V2ghtt/s, where g = 32ft/s? and h is the water depth. If the tank is 2ft in
height, 1ft in diameter and is full at time ¢t = 0, calculate the time at which
half the water has run out when the effective area of the hole is 0.25in%.  [47s]

27. The current i in a circuit satisfies Ldi/dt+ Ri = E, where L, R, E are constants.

Show that when ¢ is large the current is approximately equal to E/R.
If, instead, ¥ = E, coswt, where E,,, w are constants, show that when ¢ is large

s E, cos(wt — ¢)

T VRTtWILE

w
where tane = —.

1.2 Second-Order Equations with Constant Coefficients

Homogeneous equation 4" +ay’' +by =0, a, b = constants.

Inhomogeneous equation y” + ay’ + by = r(x).

General solution:

y = Ayi(x) + Bya(x) + yp(x), A, B = constant
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where y;, yo are any two linearly independent solutions of the homo-
geneous equation, called basis functions or complementary functions,
and y, is a particular integral that yields r(x) when substituted into
the equation.

Solution of the homogeneous equation Because d(e*)/dr =
Ae* y = eM will be a solution of the homogeneous equation if \ is

a solution of the characteristic equation

—a+VaZ— b
AN 4+ar+b=0, ie for )= — 2“ = AL de. (1.2.0)

Case 1 )\1 7é )\22
y; = eM* and 1y, = e are linearly independent and the general solu-
tion is therefore

y = AeM® + Bet?®, (1.2.2)

The values of the constants A, B are fixed by the boundary conditions.
Example Solve y” +2y —8y=0, y(0)=1, y'(0)=0.
Characteristic equation : A2 +2\ —8 = 0
A=—4, 2
y(z) = Ae™* + Be?*.

Atz=0: y=1, andy' =0

A4 B =1
and —4A+2B=0.
0_41—%—2021

Y= 3
Case 2 A\ =X =X

The two solutions in (1.2.2) are not independent. The differential equa-
tion can now be written in the factored form

1 1
v +ay +b=(——-x)(—=-2r)y=0
dx dx

If 2=-—2—)\y, thenz —Az=0, ie z= Be, B = constant,

y — Ay = Be™®,



