HORMONES AND BRAIN DEVELOPMENT

G. Dörner and M. Kawakami Editors

HORMONES AND BRAIN DEVELOPMENT

Proceedings of an International Symposium held in Berlin, German Democratic Republic on September 6-8, 1978

G. Dörner and M. Kawakami Editors

1978

ELSEVIER/NORTH-HOLLAND BIOMEDICAL PRESS AMSTERDAM · NEW YORK · OXFORD

© 1978 Elsevier/North-Holland Biomedical Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN for this volume: 0-444-80091-3 ISBN for the series: 0-444-80009-3

Published by: Elsevier/North-Holland Biomedical Press 335 Jan van Galenstraat, P.O. Box 211 Amsterdam, The Netherlands

Sole distributors for the USA and Canada: Elsevier North-Holland, Inc. 52 Vanderbilt Avenue New York, N.Y. 10017

HORMONES AND BRAIN DEVELOPMENT

DEVELOPMENTS IN ENDOCRINOLOGY VOLUME 3

Other volumes in this series:
Volume 1
Multiple Molecular Forms of Steroid Hormone Receptors
M.K. Agarwal Editor (1977)
Volume 2
Progress in Prolactin Physiology and Pathology
C. Robyn and M. Harter Editors (1978)
Volume 4
Endocrine Regulation of Lipoprotein Metabolism
L.W. Hessel and H.M.J. Krans Editors (1979)

SYMPOSIUM ORGANIZERS

Society for Endocrinology and Metabolic Disorder of the German Democratic Republic in cooperation with the Endocrinological Societies of Czechoslovakia, Hungary, Poland and the International Society of Neuroendocrinology

SCIENTIFIC COMMITTEE

- G. Dörner (German Democratic Republic)
- E. Domański (Poland)
- B. Flerkó (Hungary)
- B. Lichardus (Czechoslovakia)
- L. Martini (Italy)

EXECUTIVE SECRETARY

F. Götz (German Democratic Republic)

PREFACE

This book contains the Proceedings of a Symposium held in Berlin/GDR on September 6-8, 1978, supplemented by a few contributions of experts who could not attend this meeting. The purpose of this Symposium was to bring together scientists whose work during the last decade has been directed towards the study on effects of hormones on brain development and function.

Hormones may be defined as chemical messengers that are produced in specialized cells and exert biological effects on other cells of the same organism by acting either locally (as local hormones) or on distant target cells (as systemic hormones). In view of this definition, neurotransmitters may be regarded as local hormones of the brain, and two different hormonal actions can be distinguished for neurotransmitters as well as for systemic hormones: (1) temporary, i.e. reversible stimulatory or inhibitory effects on gene expressions and/or enzyme activities in adult life and (2) persistent, i.e. more or less irreversible effects on gene expressibilities, if the hormones act during critical developmental periods, especially of the brain.

Several findings were obtained which suggest that neurotransmitters, which are influenced by the external and internal environment, may even be regarded as direct organizers of the brain. If occurring in unphysiological concentrations and/or turnover rates during brain development they may act as teratogens, giving rise to permanent structural and biochemical changes in distinct regions of the brain associated with permanent dysfunctions of fundamental processes of life, such as reproduction, metabolism, information processing, and even of immune responsiveness. Consequently, many disorders and diseases of the neuroendocrine and immune systems called idiopathic, genuine, primary, essential or cryptogenic thus far may be based on unphysiological conditions in the external, particularly psychosocial environment, and/or the internal, i.e. metabolic and hormonal environment, during critical developmental periods of these systems. Thus teratophysiology, teratopsychology and teratoimmunology should be linked to teratomorphology.

In my opinion, genuine preventive therapy, which is the highest aim in medicine, can be achieved in fact by general improving the external environment and/or selective correcting the internal environment during critical developmental periods of the neuro-endocrine and immune systems, which are connected with each other. To reach this aim, exact knowledge of the effects of hormones, including neurotransmitters, on differentiation, maturation and function of the brain appears to be a conditio sine qua non.

Publication of this book has been achieved with minimal delay by use of the camera-ready procedure. I gratefully acknowledge the excellent assistance given by Elsevier/North-Holland Biomedical Press.

Günter Dörner

CONTENTS

Preface	VII
HORMONES AND SEX-RELATED BRAIN DIFFERENTIATION	
Role of the metabolism of steroid hormones in the brain in sex differentiation and sexual maturation L. Martini	3
Hormones, brain development and fundamental processes of life G. Dörner	13
Estrogen target cells in fetal brain W.E. Stumpf and M. Sar	27
Permanent changes of sexual dimorphism in the rat brain following neonatal treatment with psychotrophic drug J. Staudt, P. Stüber and G. Dörner	s 35
Synaptogenic action of estrogen on the hypothalamic arc nucleus (ARCN) of the developing brain and of the deafferented adult brain in female rats Y. Arai, A. Matsumoto and M. Nishizuka	uate 43
Maintenance of aggressive behaviour in castrated mice b sex steroids: Modification by neonatal injections of gonadal hormones M. Oettel and A. Kurischko	
Effect of pre- and perinatal administration of the fung F ₂ toxin on the reproduction of the albino rat C. Ruzsás, B. Mess, M. Biró-Gosztonyi and L. Wöller	ous 57
Effect of prenatal testosterone on the stimulatory estrefeedback on LH release in the pig F. Elsaesser, N. Parvizi and F. Ellendorff	ogen 61
On the intracerebral locus for androgen-sterilization B. Flerkő and B. Kosaras	69
Human research in behavioral endocrinology: Methodologiand theoretical considerations J. M. Reinisch and R. Gandelman	cal 77
Effects of sex hormone antisera on sexual differentiati of the brain D. Gupta	on 87
Pre- and early postnatal testosterone levels in rat and human F. Stahl, F. Götz, I. Poppe, P. Amendt and G. Dörner	99
Neuroendocrine findings in subjects with sexual deviati W. Rohde, F. Stahl, F.Götz and G. Dörner	ons 111

neonatally with psychotrophic drugs G. Hinz, F. Döcke and G. Dörner	121
Central control of a cytochrome P-450-dependent steroid hydroxylase in rat liver	
JÅ. Gustafsson, A. Mode, P. Skett and T. Hökfelt	129
Some characteristics of a pituitary factor ("feminizing factor") with effects on steroid metabolism in cultured hepatoma cells	
A. Mode, P. Skett, P. Eneroth, C. Sonnenschein and JÅ. Gustafsson	139
The influence of neonatal steroid exposure on testosterone metabolism in adult male rats F.A. Kincl and S.B. Henderson	147
Thoughts on the mechanism of sexual brain differentiation	
KD. Döhler and J.L. Hancke	153
The influence of a sex hormone antagonist (CPA) on morphological and functional parameters of sexual differentiation	
W. Elger and R. von Berswordt-Wallrabe	159
Regulation of catecholamine metabolism in the brain by oestrogens	
H. Breuer, H.Th. Schneider, D.E. Wandscheer and W. Ladosky	167
Neurotransmitters and brain sexual differentiation A.G. Reznikov	175
Age difference in the pituitary function in androgenized female rats with a special reference to the dose of testosterone propionate for androgenization	
T. Fujii, J. Kato and K. Wakabayashi	181
Sex-specific brain development and pineal organ B. Mess and C. Ruzsás	189
Resting and stressed plasma corticosterone levels in	
neonatally castrated adult male and female rats Z. Hahn	199
Influence of neonatally administered gestagens on fertility	
in rats	205
J. Strecke, M. Oettel, I. Tiroke and E. Ohme	205
HORMONES AND BRAIN DIFFERENTIATION UNRELATED TO SEX	
Development of the hypothalamo-neurohypophysial system in rats	
G. Wolf and G. Sterba	217
The specific localisation of vasopressin and oxytocin pathways in the rat central nervous system	
R.M. Buijs	223

	Effect of thyroxine on brain protein synthesis and binding of thyroxine to receptors in brain during ontogenesis L. Macho, J. Knopp, J. Brtko and V. Strbák	229
	Thyroid hormones in CNS development: Effect of hypo- and hyperthyroidism on early postnatal maturation of the rat hippocampus G.N. Moskovkin and T.L. Marshak	235
	Neurophysiological findings in patients with hyperthyroidism M. Schlutter, N. Roth, P. Müller and B. Guhlmann	241
	The application of dDAVP in pregnancy interferes with ontogenesis of osmoregulation in rats B. Lichardus, J. Ponec and A. Brlicová	247
	Postnatal brain development in rats with hereditary diabetes insipidus (Brattleboro strain) G.J. Boer, H.B.M. Uylings, C.M.F. Van Rheenen-Verberg and B. Fisser	253
	The effect of ACTH and/or tranquilizers on the development of brain macromolecular metabolism	259
	Cortisol regulation of choroid plexus Na [†] -K [†] -ATPase activity and cisternal cerebrospinal fluid pressure in Chick embryo F. Stastný, Z. Rychter and R. Jelínek	265
	Some aspects of hypothalamo-pituitary function in anorexia nervosa B. Baranowska and S. Zgliczyński	271
	Long-term behavioural effects of psychotrophic drugs administered during brain development in rats K. Hecht, M. Poppei, Th. Schlegel, G. Hinz, R. Tönjes, F. Götz and G. Dörner	277
	Programmed cell formation in the rat's developing visual cortex. Autoradiographic studies G. Brückner, V. Mareš and D. Biesold	285
]	L-Glutamic acid decarboxylase (GAD) in the visual system of normal and dark raised rats during postnatal development E. Kunert, V. Bigl and D. Biesold	293
Been	Fluorescence histochemical and morphometrical observations on the effects of serotonine of in vitro cultivated explants of the cerebrocortex of the rat C. Pfister and K. Goworek	299
	On the significance of maternal diabetes in the pathogenesis of diabetes mellitus in offsprings P. Amendt, A. Mohnike and G. Dörner	305

HORMONES	AND	BRAIN	MATURATION	J

system controlling gonadotropin release in immature rats M. Kawakami, T. Akema and N. Konda	313
Hormones and brain maturation in the control of female puberty F. Döcke, W. Rohde, A. Smollich and G. Dörner	327
Ontogeny of preoptic and hypothalamic catecholamine turnover rates and the relation to prolactin and gonadotropin levels	
W. Wuttke and K.G. Höhn	341
Sex hormone dependent brain maturation and sexual function in rats	
F. Götz and G. Dörner	351
Experimental studies on the puberal desensitization to oestrogen	
F. Döcke, W. Rohde, R. Tönjes, Th. Lange and G. Dörner	361
Aldosterone level in amniotic fluids, cord plasma and in plasma of newborn and children W. Hubl, G.W. Lehmann, M. Büchner, F. Stahl and G. Dörner	369
Social and spatial influences on puberty in the female Mongolian gerbil H.H. Swanson and B.C. Payman	375
Hypogonadotropic eunuchoids and Klinefelters: Sexual development and activity J. Raboch and J. Mellan	381
ACTH levels in late pregnancy K. Schollberg, E. Seiler and W. Schmidt	391
HORMONES AND BRAIN FUNCTION	
Recent data on the mechanisms controlling anterior pituitary function	
B. Halász, I. Gerendai, K. Köves, O. Lukáts, J. Marton, J. Molnár and G. Nagy	399
The organum vasculosum laminae terminalis (OVLT) and the control of gonadotropin secretion in female rats F. Piva, M.R. Carlini, P. Limonta and L. Martini	409
On the participation of the organum vasculosum of the lamina terminalis (OVLT) in the control of pituitary gonadotrophic secretion in rats	
T. Wenger, B. Kerdelhué, M. Jutisz and B. Halász	417
Tanycytes and gonadal hormones I.G. Akmayev and O.V. Fidelina	423

Neurotransmitter control of the adenohypophysial cell proliferation M. Pawlikowski, H. Stępień, J. Kunert-Radek and A. Wolaniuk	431
The effect of gonadal hormones on the biosynthesis of luteinizing hormone releasing hormone in the rat hypothalamus K. Kochman, H. Kochman, L. Chomicka and E. Domański	439
Some properties of granules containing LH-RH isolated from the hypothalamus of the female rabbit A. Ostrowska and K. Kochman	443
Biosynthesis of luteinizing hormone releasing hormone (LH-RH) in the rat hypothalamus E. Domański and K. Kochman	455
Natriuretic hormone B. Lichardus	465
Author index	471

HORMONES AND SEX-RELATED BRAIN DIFFERENTIATION

ROLE OF THE METABOLISM OF STEROID HORMONES IN THE BRAIN IN SEX DIFFERENTIATION AND SEXUAL MATURATION

L. MARTINI

Department of Endocrinology, University of Milano, 21, Via A. del Sarto, 20129 - Milano, Italy.

I. METABOLISM OF SEX STEROIDS IN THE BRAIN

A lot of recent evidence indicates that testosterone and other androgens undergo extensive metabolic conversions in the central nervous system (CNS). Two major enzymatic systems have been identified: 1) the 5α -reductase pathway; and 2) the aromatizing pathway. The products of these enzymatic reactions may be crucial for androgens to exert their typical effects on the sexual differentiation of the brain.

A. The 5α -reductase pathway.

The biochemical process through which testosterone and androstenedione may be transformed into 5α -androstan- 17β -ol-3-one (dihydrotestosterone, DHT), 5α -androstan- 3α , 17β -diol (3α -diol) and 5α -androstan-3, 17-dione (androstandione) in the central structures of male animals are summarized in figure 1.

Figure 1. The 5α -reduction of androgens.

These processes have been shown to occur in the anterior pituitary gland as well as in the hypothalamus 1,2,3,4 , in the midbrain 5,6 , in the limbic system (amygdala and hippocampus) 2,3,4 , in the cerebellum 7,8 and in the cerebral cortex 2,3,4,6,8 . Amongst these nervous structures, the hypothalamus appears to possess the highest converting activity. These results have been mainly obtained "in vitro", but have been confirmed also "in vivo" 8,9,10 in several species of animals. These include: the rat 1,2,3,4,5,6,7,9,10 , the mice 1 , the dog 12 , the monkey 8 , the beef 13 , the guinea pig 14 and the human fetus 15,16 . In the central structures of avian species (chick, European starling, etc.) a $^{5\alpha}$ -reductase system seems to coexist with a $^{5\alpha}$ -reductase system 17,18 .

In the brain, like in all other mammalian structures (e.g., prostate, seminal vesicles, etc.), the 5α -reduction of testosterone and androstenedione is an irreversible process, and consequently DHT and androstandione cannot be enzymatically converted back to testosterone and androstenedione, respectively 19,20 . On the contrary, 3α -diol may easily revert to DHT, in the anterior pituitary and in the hypothalamus under both "in vitro" and "in vivo" conditions 10 19,20,21

In male rats, age related changes of the 5α -reductase activity of the central structures have been reported. In the hypothalamus and in the anterior pituitary the 5α -reductase system seems to be more active in neonatal and prepuberal animals than in adults 2,22,23,24,25 . In neonatal and prepuberal rats, the 5α -reductase activity is also very elevated in the cerebral cortex 2 , a structure which has a very low activity following sexual maturation. The progressive decrease of the 5α -reductase of the central structures from birth to sexual maturity may play an important role in the induction of puberty in this species.

B. The aromatizing pathway.

The process of aromatization, which converts androgens into estrogens, is depicted in figure 2. The presence of aromatizing enzymes in the brain was suggested by Knapstein $\underline{\text{et al.}}^{26}$ and subsequently demonstrated by several other investigators. Using either testosterone or androstenedione as the sub-