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Preface

Sugars have long been recognized for their role in biology and medicine
and their synthesis and modifications are a constant challenge for organic
chemists. However, in the world of polymer chemistry and material sciences,
sugars have often been neglected. While peptides and oligonucleotides - the
other two biomacromolecules - have inspired tremendous efforts in creat-
ing biohybrid or bioinspired polymers and materials, the sugars have been
mainly used as a renewable resource for starting materials not taking into
account their biological properties. Sugars mediate a number of biological
events such as inflammation and infection via their interaction with protein
receptors. However, the interaction of a single sugar ligand is very weak and
Nature uses the so-called glycocluster or multivalency effect to have several
sugar ligands interact simultaneously and create a strong binding event.
Based on this concept, polymer chemists have synthesized glycopolymers
presenting a large number of sugar ligands along a polymeric backbone, thus
creating high-affinity ligands. Although the concept is fairly simple, the cova-
lent attachment of sugar ligands to a polymeric backbone, the synthesis can
be challenging, including different strategies for the conjugation of sugar
ligands and the variation of the polymer chains. Tremendous progress has
been made in recent years in synthesizing glycopolymers and glycomaterials.
The ability of sugars to introduce biofunctionality into synthetic materials
has been recognized and shown for a number of applications ranging from
drug design to biosensors. However, the field is still in its infancy and many
of the synthesized glycopolymers and -materials have not yet been studied
for their potential properties and applications.

The chapters in this book are concerned with different classes of glycopo-
lymers and glycomaterials and specifically focus on the different synthetic
strategies that have been developed over the last few years. In the first chapter,
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vi Preface

Lindhorst focuses on the lectin structures that are the lock of Glycopolymer
Code. We believe that it is crucial to understand the locking mechanism first
in order to attempt to crack the code. The following chapter is concerned
with the preparation of glycopolymers, where Ting and Stenzel provide an
extremely detailed account of state-of-the-art synthesis techniques for gly-
copolymers. In the third chapter, Krannig and Schlaad provide insights into
glycopolypeptides. This chapter is followed by Dondoni and Marra’s excel-
lent introduction to glycocalixarenes and their molecular recognition. In
Chapter 5, Voit and her colleagues focus on the dendritic architectures of
synthetic glycan structures and their use in brain disease therapy. In Chapter
6, Chen and her colleagues discuss the glycomaterials that grow larger as
we look at the self-assembly of glycopolymers and their formation of vesi-
cles and hydrogels. In the last three chapters, the focus is concentrated on
the applications of glycopolymers. In Chapter 7, Narain and his colleagues
discuss glyconanoparticles and their biomedical applications. Following on,
Chapter 8, by Fernandez-Garcia and Mufioz-Bonilla, then outlines the great
potential for such hybrid glycomaterials in various biomedical applications.
In the final chapter, Miura and Seto discuss recent literature examples on the
use of glycopolymers in biosensing applications. We believe that all these
various applications provide insights into Glycopolymer Code that require
a more systematic approach, similar to glycomics, in order to crack Nature’s
sugar code and create the Glycopolymer Code.

Overall, we hope that this book will inspire interested research students
and academics alike and support their education, teaching and research and
thus further promote the field of glycopolymers and glycomaterials.

We are very grateful to all authors of the chapters in this book who kindly
agreed to support this project and we would like to thank them for their
enthusiasm and excellent work.
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CHAPTER 1

Small Molecule Ligands for
Bacterial Lectins: Letters of
an Antiadhesive Glycopolymer
Code

THISBE K. LINDHORST*?

Otto Diels Institute of Organic Chemistry, Christiana Albertina University
of Kiel, Otto-Hahn-Platz 3-4, 24118 Kiel, Germany
*E-mail: tklind@oc.uni-kiel.de

1.1 Introduction

This chapter discusses how glycopolymers might function in the context of
microbial adhesion. This is an important topic as attachment of viruses and
bacteria to surfaces is a global problem and for host organisms it has funda-
mental implications for their vitality. This was considered when the human
microbiome project was launched in 2008. Consequently, the human micro-
biome project is dedicated to research into how changes of microbial coloni-
zation influence human health and disease.’

It has turned out that microbial colonization of the body is largely associ-
ated with the glycoconjugate decoration of the host cells, named the ‘glyco-
calyx.’ The glycocalyx of a cell is an extracellular compartment comprising a
huge variety of different glycoconjugates. Strikingly, it forms an anchoring
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2 Chapter 1

Is this a good
adhesion site?
| don't recognize
the code!

xA|e002A |9

Host cell

Figure 1.1 ‘Deciphering the glycocode.® Cartoon to exemplify that carbohy-
drate-specific adhesion of, e.g:, a bacterial cell to the glycocalyx of a host
cell might be looked at as reading a code.

platform for invading microbes. It has been asked how carbohydrate recog-
nition has evolved among microbes,” how it is regulated and how it develops
during the lifetime of an organism, in other words, how binding to cell sur-
face carbohydrates is being ‘spelled’ (Figure 1.1). It has been suggested that
the oligo- and polysaccharide structures that are expressed on cell surfaces
function in the sense of a ‘glycocode,” thus paralleling the biology of carbo-
hydrates with the alphabet of a language, in order to decipher its meaning.*
Of course, it is sensible to consider the diversity of carbohydrate structures
as a biologically meaningful concert corresponding to the whole of molecu-
lar interactions. Glycopolymers can be regarded as a means to interrogate a
putative carbohydrate alphabet and, moreover, as a powerful tool to prevent
microbial colonization of surfaces.

1.2 Lectin-Mediated Bacterial Adhesion

To colonize cell surfaces of the host, bacteria, for example, have toaccomplish
a process of adhesion in order to withstand natural defence mechanisms
and mechanical shear stress. Stable adhesion can lead to the formation of
bacterial biofilms, which is accompanied by vital advantages for the micro-
bial colonies® but disadvantages for the host. Finally, adhesion apparently is
a prerequisite for bacterial infections that constitute a major global health
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Escherichia coli cell

Sex pilus
N
<
Q Flagella
Fimbriae
ca 1 um

Figure 1.2 A majority of bacterial cells, such as E. coli, are equipped with three
types of hair-like protein appendages, named pili, fimbriae and flagella.
Fimbriae serve as adhesive organelles, mediating adhesion to the glyco-
calyx of host cells. E. coli cells are covered with several hundred copies
of fimbriae of different carbohydrate specificity.

problem, in particular in developing countries. Bacterial infections are espe-
cially dangerous for newborns and young children,® with the most common
serious neonatal infections involving bacteremia, meningitis and respiratory
tract infections. Key pathogens in these infections are Escherichia coli, Klebsi-
ella sp., Staphylococcus aureus and Streptococcus pyogenes.’

One important mechanism of bacterial adhesion is based on molecular inter-
actions between cell surface carbohydrates of the host and specialized carbo-
hydrate-specific bacterial proteins called adhesins or lectins. Lectins were first
described at the end of the 19th century,® when it was shown that plant lectins
have the ability to agglutinate erythrocytes blood group specifically. As we know
today, this is a result of a multivalent carbohydrate-lectin interaction. In 1954,
Boyd and Shapleigh proposed the term lectin ‘for these and other antibody-like
substances’ with blood group-specific agglutination properties.’ In the 1990s,
Lis and Sharon' suggested that ‘lectin’ should be used as a general name for
all proteins of non-immune origin that possess the ability to agglutinate eryth-
rocytes and other cell types. Early classification of lectins relied on their car-
bohydrate specificity. However, today lectins are grouped on the basis of their
structural features and especially the relatedness of their carbohydrate binding
sites, which are often called ‘carbohydrate recognition domains,’ or CRDs."'™

It is common knowledge today that lectins are ubiquitously spread in
Nature, comprising many different functions in different organisms.'* Also,
many bacteria, in particular those of the Enterobacteriaceae family, have the
ability to agglutinate erythrocytes by their own lectins. This haemaggluti-
nation activity of bacteria is almost always associated with the presence of
multiple filamentous protein appendages projecting from the surface of the
bacteria.’”® These are called fimbriae (from the Latin word for ‘thread’) and
also, less correctly, pili (from the Latin word for ‘hair’) (Figure 1.2). Whereas
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pili are involved in gene transfer between bacteria (‘sex pili’) and flagellae
have the role of sensory organelles used for moving, fimbriae serve as adhe-
sive organelles. Fimbriae contain lectin subunits, which mediate carbohy-
drate-specific adhesion to cell surfaces (and also cell agglutination). Thus,
bacteria utilize the sugar decoration of cells - the glycocalyx - to colonize the
cell surface, wherever cells are in contact with the outside environment, as
for example in the case of epithelial cells.

1.3 Carbohydrate Specificity of Type 1 Fimbriae

Type 1 fimbriae are particularly efficient adhesion tools of bacteria to medi-
ate the colonization of various biotic and abiotic surfaces. They are uniformly
distributed on the bacterial cell surface with their length varying between 0.1
and 2 pm and a width of ~7 nm. Since the 1970s, numerous studies have been
carried out to elucidate the carbohydrate specificities of bacterial adhesion,
in particular of type 1 fimbriae-mediated adhesion of E. coli.® A key finding
of this research was that the type 1 fimbrial lectin, called FimH, requires
o-D-mannose and o-bD-mannosides for binding. The other anomer, namely
B-mannosides, cannot be complexed within the carbohydrate binding site.
This knowledge suggested that type 1 fimbriated bacteria can adhere to
tissues expressing glycoproteins of the high-mannose type, exposing mul-
tiple terminal a-D-mannosyl units.'® For example, urinary tract infections
are caused by uropathogenic E. coli (UPEC). Type 1 fimbriae are present in
at least 90% of all known UPEC strains, where they are important pathoge-
nicity factors.>** Today, it is known that bacterial adhesion to the surface of
urothelial cells is mediated by FimH binding to oligomannoside residues of
the glycoprotein uroplakin Ia. This interaction is a prerequisite for bacterial
invasion.'” Consequently, much effort has been invested in the development
of potent inhibitors of type 1 fimbriae-mediated bacterial adhesion in order
to prevent bacterial adhesion to mucosa and thus treat bacterial infection in
an approach that has been called antiadhesion therapy.'*"’

In this context, a second feature of type 1 fimbriae-mediated bacterial
adhesion that was discovered already quite early is important.' It was found
that a-pD-mannosides with an aromatic aglycone moiety exhibit an improved
affinity to the bacterial lectin and an enhanced potency as inhibitors of type 1
fimbriae-mediated bacterial adhesion to surfaces. Today, this finding is well
understood based on the X-ray studies of the structure of the type 1 fimbrial
lectin FimH that have been published since 1999.°** Structural biology has
shown that the entrance of the carbohydrate binding site of FimH is flanked
by two tyrosine residues, Y48 and Y137, which make n-n interactions with an
aromatic aglycone of an a-pD-mannoside ligand that is complexed within the
cavity of the FimH carbohydrate binding site (Figure 1.3).

This and other structural features of the bacterial lectin FimH have been
described elsewhere®*° and are not further detailed in this account. Simi-
larly, the biosynthesis of type 1 fimbriae has been elucidated and reviewed.””®
Briefly, the fimbrial appendage is assembled in the outer membrane of
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Figure 1.3 Left: spatial orientation of the amino acid residues at the entrance of
the carbohydrate binding site of the bacterial lectin FimH as revealed
by crystallography. The tyrosine residues Y48 and Y137 form a so-called
‘tyrosine gate’ that mediates the comparatively high affinity of man-
nosides with an aromatic aglycone by formation of n-n interactions.
Right: the FimH carbohydrate binding site depicted as a Connolly sur-
face, complexed with the mannoside 2 (¢f Figure 1.5). Mannoside 2
is shown as a CPK model. The large chloro substituent of 2 pointing
towards the observer fills a depression at the ridge of the carbohydrate
binding site, thereby improving affinity. The ring structure in white
explains how a-D-mannoside ligands are located within the FimH cleft,
the a-glycosidic bond sticking out of the binding site.

Gram-negative bacteria in a process called the chaperone-usher pathway. To
be able to judge the potential value of especially glycopolymers as inhibitors
of type 1 fimbriae-mediated bacterial adhesion, it is important to know that
FimH is a two-domain protein, terminating every type 1 fimbrial rod (Figure
1.4). The so-called pilin domain of FimH, FimH,, is required to anchor the
protein at the fimbrial tip, comprising also the subunits FimF and FimG.
The lectin domain FimH;, on the other hand, accommodates the a-pD-man-
noside-specific carbohydrate-binding site. Both FimH domains are intercon-
nected by a hinge region, permitting allosteric regulation of the carbohydrate
binding site (see below).***°

1.4 Tailor-Made FimH Antagonists

Based on the information obtained in structural biology studies, molec-
ular modelling was employed to design tailor-made ligands of FimH and
FimH antagonists. Synthesis and testing of these non-natural a-p-manno-
sides have only recently led to a revival of the idea of an antiadhesion ther-
apy against microbial infection.’ In the 1990s, Lindhorst et al. introduced
the idea of using multivalent a-D-mannoside clusters to inhibit effectively
type 1 fimbriae-mediated bacterial adhesion in a potential therapeutic con-
text.”” Later, molecular docking studies led to promising new monovalent
mannosides as potent FimH antagonists.* Many groups have added various



