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Preface

Habe Muth dich deines eigenen Verstandes zu bedienen.

(Have the courage to think for yourself.)
Immanuel Kant, in Beantwortung der Frage: Was ist Aufklarung?

The disciplines of statistical mechanics and thermodynamics are very closely related,
although their historical roots are separate. The founders of thermodynamics devel-
oped their theories without the advantage of contemporary understanding of the
atomic structure of matter. Statistical mechanics, which is built on this understanding,
makes predictions of system behavior that lead to thermodynamic rules. In other
words, statistical mechanics is a conceptual precursor to thermodynamics, although it
is an historical latecomer.

Unfortunately, despite their theoretical connection, statistical mechanics and ther-
modynamics are often taught as separate fields of study. Even worse, thermodynamics
is usually taught first, for the dubious reason that it is older than statistical mechanics.
All too often the result is that students regard thermodynamics as a set of highly
abstract mathematical relationships, the significance of which is not clear.

This book is an effort to rectify the situation. It presents the two complementary
aspects of thermal physics as a coherent theory of the properties of matter. My
intention is that after working through this text a student will have solid foundations
in both statistical mechanics and thermodynamics that will provide direct access to
modern research.

Guiding Principles

In writing this book I have been guided by a number of principles, only some of which
are shared by other textbooks in statistical mechanics and thermodynamics.

e | have written this book for students, not professors. Many things that experts
might take for granted are explained explicitly. Indeed, student contributions have
been essential in constructing clear explanations that do not leave out ‘obvious’
steps that can be puzzling to someone new to this material.

e The goal of the book is to provide the student with conceptual understanding, and
the problems are designed in the service of this goal. They are quite challenging,
but the challenges are primarily conceptual rather than algebraic or computa-
tional.

¢ I believe that students should have the opportunity to program models themselves
and observe how the models behave under different conditions. Therefore, the
problems include extensive use of computation.
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The book is intended to be accessible to students at different levels of preparation.
I do not make a distinction between teaching the material at the advanced
undergraduate and graduate levels, and indeed, I have taught such a course many
times using the same approach and much of the same material for both groups. As
the mathematics is entirely self-contained, students can master all of the material
even if their mathematical preparation has some gaps. Graduate students with
previous courses on these topics should be able to use the book with self-study
to make up for any gaps in their training.

After working through this text, a student should be well prepared to con-
tinue with more specialized topics in thermodynamics, statistical mechanics, and
condensed-matter physics.

Pedagogical Principles

The over-arching goals described above result in some unique features of my approach
to the teaching of statistical mechanics and thermodynamics, which I think merit
specific mention.

Teaching Statistical Mechanics

The book begins with classical statistical mechanics to postpone the complica-
tions of quantum measurement until the basic ideas are established.

I have defined ensembles in terms of probabilities, in keeping with Boltzmann’s
vision. In particular, the discussion of statistical mechanics is based on Boltz-
mann’s 1877 definition of entropy. This is not the definition usually found in
textbooks, but what he actually wrote. The use of Boltzmann’s definition is one of
the key features of the book that enables students to obtain a deep understanding
of the foundations of both statistical mechanics and thermodynamics.

A self-contained discussion of probability theory is presented for both discrete
and continuous random variables, including all material needed to understand
basic statistical mechanics. This material would be superfluous if the physics
curriculum were to include a course in probability theory, but unfortunately, that
is not usually the case. (A course in statistics would also be very valuable for
physics students—but that is another story.)

Dirac delta functions are used to formulate the theory of continuous random
variables, as well as to simplify the derivations of densities of states. This is not
the way mathematicians tend to introduce probability densities, but I believe that
it is by far the most useful approach for scientists.

Entropy is presented as a logical consequence of applying probability theory to
systems containing a large number of particles, instead of just an equation to be
memorized.

The entropy of the classical ideal gas is derived in detail. This provides an
explicit example of an entropy function that exhibits all the properties postulated
in thermodynamics. The example is simple enough to give every detail of the
derivation of thermodynamic properties from statistical mechanics.
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e The book includes an explanation of Gibbs’ paradox—which is not really para-
doxical when you begin with Boltzmann’s 1877 definition of the entropy.

e The apparent contradiction between observed irreversibility and time-reversal-
invariant equations of motion is explained. I believe that this fills an important
gap in a student’s appreciation of how a description of macroscopic phenomena
can arise from statistical principles.

Teaching Thermodynamics

e The four fundamental postulates of thermodynamics proposed by Callen have
been reformulated. The result is a set of six thermodynamic postulates, sequenced
so as to build conceptual understanding.

e Jacobians are used to simplify the derivation of thermodynamic identities.

® The thermodynamic limit is discussed, but the validity of thermodynamics and
statistical mechanics does not rely on taking the limit of infinite size. This is
important if thermodynamics is to be applied to real systems, but is sometimes
neglected in textbooks.

® My treatment includes thermodynamics of non-extensive systems. This allows
me to include descriptions of systems with surfaces and systems enclosed in
containers.

Organization and Content

The principles I have described above lead me to an organization for the book that
is quite different from what has become the norm. As was stated above, while most
texts on thermal physics begin with thermodynamics for historical reasons, I think it
is far preferable from the perspective of pedagogy to begin with statistical mechanics,
including an introduction to those parts of probability theory that are essential to
statistical mechanics.

To postpone the conceptual problems associated with quantum measurement, the
initial discussion of statistical mechanics in Part I is limited to classical systems.
The entropy of the classical ideal gas is derived in detail, with a clear justification
for every step. A crucial aspect of the explanation and derivation of the entropy is
the use of Boltzmann’s 1877 definition, which relates entropy to the probability of a
macroscopic state. This definition provides a solid, intuitive understanding of what
entropy is all about. It is my experience that after students have seen the derivation
of the entropy of the classical ideal gas, they immediately understand the postulates
of thermodynamics, since those postulates simply codify properties that they have
derived explicitly for a special case.

The treatment of statistical mechanics paves the way to the development of
thermodynamics in Part II. While this development is largely based on the classic
work by Herbert Callen (who was my thesis advisor), there are significant differences.
Perhaps the most important is that I have relied entirely on Jacobians to derive
thermodynamic identities. Instead of regarding such derivations with dread—as I did
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when I first encountered them—my students tend to regard them as straightforward
and rather easy. There are also several other changes in emphasis, such as a clarification
of the postulates of thermodynamics and the inclusion of non-extensive systems; that
is, finite systems that have surfaces or are enclosed in containers.

Part IIT returns to classical statistical mechanics and develops the general theory
directly, instead of using the common roundabout approach of taking the classical
limit of quantum statistical mechanics. A chapter is devoted to a discussion of the
apparent paradoxes between microscopic reversibility and macroscopic irreversibility.

Part IV presents quantum statistical mechanics. The development begins by
considering a probability distribution over all quantum states, instead of the common
ad hoc restriction to eigenstates. In addition to the basic concepts, it covers black-
body radiation, the harmonic crystal, and both Bose and Fermi gases. Because of
their practical and theoretical importance, there is a separate chapter on insulators
and semiconductors. The final chapter introduces the Ising model of magnetic phase
transitions.

The book contains about a hundred multi-part problems that should be considered
as part of the text. In keeping with the level of the text, the problems are fairly
challenging, and an effort has been made to avoid ‘plug and chug’ assignments.
The challenges in the problems are mainly due to the probing of essential concepts,
rather than mathematical complexities. A complete set of solutions to the problems
is available from the publisher.

Several of the problems, especially in the chapters on probability, rely on computer
simulations to lead students to a deeper understanding. In the past I have suggested
that my students use the C++ programming language, but for the last two years
I have switched to VPython for its simplicity and the ease with which it generates
graphs. An introduction to the basic features of VPython is given in in Appendix A.
Most of my students have used VPython, but a significant fraction have chosen to use
a different language —usually Java, C, or C++-. I have not encountered any difficulties
with allowing students to use the programming language of their choice.

Two Semesters or One?

The presentation of the material in this book is based primarily on a two-semester
undergraduate course in thermal physics that I have taught several times at Carnegie
Mellon University. Since two-semester undergraduate courses in thermal physics are
rather unusual, its existence at Carnegie Mellon for several decades might be regarded
as surprising. In my opinion, it should be the norm. Although it was quite reasonable
to teach two semesters of classical mechanics and one semester of thermodynamics to
undergraduates in the nineteenth century—the development of statistical mechanics
was just beginning—it is not reasonable in the twenty-first century.

However, even at Carnegie Mellon only the first semester of thermal physics is
required. All physics majors take the first semester, and about half continue on to
the second semester, accompanied by a few students from other departments. When I
teach the course, the first semester covers the first two parts of the book (Chapters 1
through 18), plus an overview of classical canonical ensembles (Chapter 18) and
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quantum canonical ensembles (Chapter 22). This gives the students an introduction
to statistical mechanics and a rather thorough knowledge of thermodynamics, even if
they do not take the second semester.

It is also possible to teach a one-semester course in thermal physics from this book
using different choices of material. For example:

e If the students have a strong background in probability theory (which is, unfortu-
nately, fairly rare), Chapters 3 and 5 might be skipped to include more material
in Parts IIT and IV.

e [fit is decided that students need a broader exposure to statistical mechanics, but
that a less detailed study of thermodynamics is sufficient, Chapters 14 through
17 could be skimmed to have time to study selected chapters in Parts III and IV.

e If the students have already had a thermodynamics course (although I do not
recommend this course sequence), Part II could be skipped entirely. However,
even if this choice is made, students might still find Chapters 9 to 18 useful for
review.

One possibility that I do not recommend would be to skip the computational
material. I am strongly of the opinion that the undergraduate physics curricula at
most universities still contain too little instruction in the computational methods that
students will need in their careers.
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