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Preface

This book deals with the finite element method (FEM) used for analysing the mechanics of
structures in the case of linear elasticity. The novelty of this book is that the finite elements
(FEs) are formulated on the basis of a class of theories of structures known as the Carrera
Unified Formulation (CUF).

The CUF provides one-dimensional (beam) and two-dimensional (plate and shell) theories
that go beyond classical theories (those of Euler, Kirchhoff, Reissner, Mindlin, Love) by
exploiting a condensed notation and by expressing the displacement fields over the cross-
section (the beam case) and along the thickness (plate and shell cases) in terms of base
functions whose forms and orders are arbitrary. The condensed notation leads to the so-called
fundamental nucleus (FN) of all the FEM matrices and vectors involved. The fundamental
nuclei (FNs) and the related assembly technique are schematically shown in Table 1. The
FNs consist of a few mathematical statements whose forms are independent of the theory of
structures (TOS) employed. The FNs stem from the 3D elasticity equations via the principle
of virtual displacements (PVD) and can be easily obtained for the 3D, 2D and 1D cases. This
table will be reintroduced at the beginning of each chapter of this book that deals with 3D, 2D
and 1D models to highlight the relevant fundamental nucleus.

The 1D and 2D FEs that stem from the CUF have enhanced capabilities since they can
obtain results that are usually only provided by 3D elements with much lower computational
costs. The 1D elements are particularly advantageous since they can deal with 2D and 3D
problems in a proper manner.

The ID and 2D CUF models are described in various chapters of this book. Particular
attention has been paid to 1D and 2D FEs with only pure displacement degrees of freedom.
The displacement unknowns of such FEs are defined over the physical surfaces of the real 3D
body: this means that the definitions of mathematical reference axes (for beams) or reference
surfaces (for plates and shells) are not needed. This capability is extremely important in an
FEM/CAD coupling scenario. The modifications carried out in an FEM model can, in fact, be
implemented directly in a CAD model (and vice versa) since physical surfaces are taken into
account.

The concluding chapters of the book offer an overview of some of the most important
features of the CUF models. In particular, the following topics are emphasized: multifield
loads can be easily implemented; layered structures can be analysed; 1D, 2D and 3D models
can be combined straightforwardly; and the CUF can lead to a definition of the BTD to evaluate
the effectiveness of any structural theory. Numerical examples appear throughout the book on
classical and non-classical TOS problems.



Table 1 A schematic description of the CUF and the related fundamental nucleus of the stiffness
matrix for 3D, 2D and 1D models
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CUF leads to the automatic implementation of any theory of structures through 4 loops (i.e. 4 indexes):

¢ 7 and s deal with the functions that approximate the displacement field and its virtual variation along
the plate/shell thickness (F,(z), F,(z)) or over the beam cross-section (F_(x, 2), F,(x, 2));

e i and j deal with the shape functions of the FE model, (3D:N;(x, y, 2), N;(x, y, 2); 2D:N;(x, y), N;(x, y);
ID:N;(y), N;(y))-

77
Fundamental Node E/e,g;em
Nucleus ° *——9

This table shows the essential features of the CUF. The strong form of the equilibrium equations allows one to derive
a compact formulation for the fundamental nucleus. The nine elements of the FN can be written using only 2 terms.
In this table, k,, and k,, are reported. All the remaining terms can be derived by a permutation of the indexes. This
compact formulation is used to derive the 3D, 2D and 1D models in weak form.



Preface Xix

This book follows on from two recent books where the CUF was applied to shell, plate and
beam models: Plates and Shells for Smart Structures: Classical and Advanced Theories for
Modeling and Analysis (E. Carrera, S. Brischetto and P. Nali, John Wiley & Sons, Ltd, 2011)
deals with refined shell and plate models for smart structures; and Beam Structures: Classical
and Advanced Theories (E. Carrera, G. Giunta and M. Petrolo, John Wiley & Sons, Ltd, 2011)
deals with refined beam models. Analytical and FE formulations were introduced in both these

books.



Nomenclature and Acronyms

The main symbols and acronyms that are defined in the book are listed below. Unless otherwise
stated, the following definitions will be valid throughout the entire book.

Symbols

B, b Differential operator of the strain—displacements relations
B2, B3, B4 Beam elements with two, three and four nodes
C Hooke’s law stiffness matrix
Ci1,C,C5y,C3,Cy3,Cyqy  Hooke’s law stiffness coefficients
E  Young’s modulus
F., F; Expansion functions
G Shear modulus
g Body forces per unit volume vector
g 8y-8- Body forces per unit volume components
H  Metric factor
i,j Shape function indexes
k Layer index
K Stiffness matrix
k™Y  Fundamental nucleus of the stiffness matrix
ko ks ... k2 Components of the stiffness matrix fundamental nucleus
L3,L4,16,L9 Lagrange cross-section elements with three, four, six and nine nodes
o Work of the external forces
L;,, Work of the inertial forces
Work of internal forces
M  Number of terms in an expansion
M  Mass matrix
m™Y  Mass matrix fundamental nucleus
al my’, ..., m2"  Components of the mass matrix fundamental nucleus
N  Expansion order of F,, F,
n  Normal unit vector
N, Ny,N.,N; MITC4 interpolating shape functions for shear stresses
N;, N; Shape functions
N,, MITC9 interpolating shape functions for membrane stresses



xxii

Nomenclature and Acronyms

P,p Load vector

P, P, P. Pointload components
Py Py-p-  Surface load components
4..4y.q- Line load components

R Radius of curvature

U,u Displacement vector

uy, u,,u.  Displacement components
Generalized displacement vector
. Nodal displacement vector

U,ii Acceleration vector

V' Volume

x,y,z Orthogonal Cartesian reference system
a, f,z Curvilinear coordinates
6 Virtual variation
£
£

T

Strain vector

oo Eyys €22 Axial strain components
Epa e‘ €25 Vays Vyzr Vo= Shear strain components
k  Shear correction factor
v Poisson’s ratio
p Material density
o Stress vector
G > Oyys 0. Axial stress components
Oy Oy Oy Tuys 7,.. T, Shear stress components
7,5 Expansion function indexes
¢ Rotation

Acronyms

1D/2D/3D  One-/Two-/Three-Dimensional
BC Boundary Condition

BS Beam Semimonocoque

BTD Best Theory Diagram

CAD Computer-Aided Design

CLT Classical Lamination Theory
CNT Carbon Nanotube

CPT Classical Plate Theory

CST Classical Shell Theory

CUF Carrera Unified Formulation
CW  Component-Wise

DOF  Degree of Freedom

EBBT Euler-Bernoulli Beam Theory
ESL  Equivalent Single Layer

ESLM ESL Model

FE Finite Element

FEA  Finite Element Analysis



Nomenclature and Acronyms

xxiii

FEM Finite Element Method

FGM Functionally Graded Material

FN/FNs Fundamental Nucleus/Nuclei
FSDT First-order Shear Deformation Theory
HOT Higher-Order Theory

IC Interlaminar Continuity

LE Lagrange Expansion

LFAT Love First Approximation Theory

LM Lagrange Multiplier

LSAT Love Second Approximation Theory
LW Layer-Wise

LWM LW Model

MAAA  Mixed Axiomatic—Asymptotic Approach
MAC Modal Assurance Criterion

MCS Multi-Component Structures

MFP  Multifield Problem

MITC Mixed Interpolation of Tensorial Components
MLS Multilayered Structure

NRP Nanotube Reinforced Polymer
ODE/PDE  Ordinary/Partial Differential Equations
PL  Poisson Locking

PS  Pure Semimonocoque

PVD  Principle of Virtual Displacements
PVW  Principle of Virtual Work

RMVT Reissner Mixed Variational Theorem
SDT Shear Deformation Theory

TBT Timoshenko Beam Theory

TE Taylor Expansion

TL Thickness Locking

TOS Theory of Structures

WRM  Weight Residual Method
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