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Preface

The last few years have witnessed both a rapid growth in the number
of courses offered by universities and polytechnics in the fields of
management, economics, and business studies, and an increasing emphasis
within these areas on quantitative analysis and the development of
numerate skills. Even so, most such degree courses accept students with
very diverse backgrounds in mathematics, and first-year classes may well
include several students with a recent good ‘A’ level pass, and others with
an average ‘O’ level taken several years previously. Introductory courses in
mathematics thus need to bring the less well qualified student up to the
standard of the more advanced students in selected topics, as well as
develop the latter’s capabilitiecs more in the direction of mathematics
applied to subjects less technical than the physical sciences. This text is
based on the first-year course in mathematics offered to undergraduate
students at the University of Bradford Management Centre, and was
developed in the first instance specifically for this course. Despite this
particular origin, however, the level of the text is appropriate for
recommendation to students with at least mathematics at ‘O’ level
standard, following courses in Business Studies, Economics, Finance, and
related social sciences with some quantitative input. Material is also
included which should prove useful for understanding the mathematics
involved in introductory courses in statistics in the same subject areas
(although the book does not attempt to provide a full course in basic
statistics, which is better left to a separate specialist volume). Likewise at
the postgraduate level, the text is appropriate for those students following
MBA, MSc, or research programmes in management whose academic
backgrounds have been in non-quantitative subjects.

In line with the usual structure of many degree courses, this text aims to
help the student acquirc and develop one of the basic analytical skills
(mathematics) early in the course, which would then be exercised in
relation to appropriate classes of problems (such as operational research or
economics) in a subsequent stage of the degree programme. The emphasis
is therefore on helping the social science type student become a better
mathematician, the techniques covered being selected with a view to those
types of application likely to be faced subsequently. This emphasis on
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developing mathematical skills is in contrast to many texts where the
mathematical ability of the reader is assumed, and is exercised to greater
or lesser degree on classes of problems, rather than being explicitly
developed as skills.

The applied nature of the subject is emphasized in this text through the
choice of worked and set examples which run in parallel with the main
mathematical techniques discussed. After the introductory chapter, which
reviews basic mathematical notation, the text proceeds through five main
classes of techniques:

1. Basic set theory, leading into relations, functions, and graphs.

2. Linear relationships.

3. Curvilinear relationships, leading to the development of the differential
and integral calculus.

4. Matrix algebra, which is developed from a second look at simultaneous
linear equations. '

5. Mathematical series.

This material is developed through examples of some applications, so for
example: :

1. An introduction to linear programming, using graphical representation,
is presented after the section on linear relationships.

2. Several aspects of mathematical models are discussed in conjunction
with the section on nonlinear relationships.

3. Various discounting techniques in finance are explained and developed
from first principles in the section on mathematical series.

4. The theme of optimization under constraints, common to several
applications, is emphasized in order to demonstrate their element of
similarity.

The chart illustrates the many connections within the material covered.

The various ‘pure’ mathematical inputs toward the left-hand side of the

diagram are employed in the applications listed towards the right-hand
side.

Besides worked examples within the text, three further sets of examples
are included. Simpler examples for the student are included at the end of
each chapter (with answers provided at the end of the book); intermediate
problems, suitable for tutorial work, also follow each chapter (withiout
answers); and more advanced problems are included at the end of each of
the six main sections of the book, the solutions to this latter group being

explained more fully, and providing in effect an extension to the material
of the main text.
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PART ONE

Introduction

This introductory chapter begins by summarizing the basic algebraic rules
and notation which will be used and assumed throughout the remainder of
the text. Although it should be adequate as a basis for revision, it is
deliberately very concise, and any reader who finds himself having great
difficulties with this section is advised to refer in the first instance to an
introductory text on algebra and arithmetic.

Subsequent sections address themselves to the task of developing the
readers’ commonsense in spotting errors and avoiding illegal mathematical
operations. Aspects of approximation are covered, as well as intuitive or
geometric reasoning to assist in the manipulation of algebraic formulae.






CHAPTER 1

Basic Notation

“he phrase ‘the language of mathematics’ suggests that a mathematical
expression can, in principle, be translated into an English language form.
Or, putting it another way, the underlying logic of a mathematical
operation can be expressed either by means of symbols (i.e. usual
mathematical notation) or by a statement in English (or Chinese, or
French, etc.}). However, mathematical notation is

(a) Brief.  Complicated operations in terms of logic can be expressed
very succinctly.

(b) Universal. A unique language, with one set of rules or grammar which
is universally accepted.

(¢) Rigorous. English can sometimes be vague, or ambiguous. A mathe-
matical expression should only have one possible interpret-
ation.

For example, the following would be extremely difficult to write in English,
and would certainly not be brief

3ab ,/xy/[(logx +6+e?) YR+ z i’=6x10" Zx

i=2

Firstly, therefore, we must understand the conventions of the notation, and
how an expression like that above should be interpreted.

1.1 ARITHMETIC OPERATIONS

The four basic operations in arithmetic are addition, subtraction,
multiplication, and division, which are written in symbol form as +, —, X,
and /. When combining several operations, the multiplication and division
should always be carried out before addition and subtraction, i.e. x and /
before + and —. Otherwise, operations are performed in sequence from
left to right; for example,

5%x124+9~-3x2/6+7=60+9—-6/6+7=60+9—-1+7=75.
5. :
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1.2 BRACKETS

When brackets, () or [] etc., appear in a statement, all operations inside
the bracket are performed before those outside the bracket; for example,

5x(6-8)+4/2=5x(-2)+4/2=~5x2+4/2=-10+2= -8,

When brackets are nested, the innermost set of operations is carried out
first, for example,

Gx(5-2)+Tx@-4)2=0Bx3+7x4)2=(9+28)2
=372 = 185.

1.3 MODULUS SIGN

The modulus sign is used to mean the positive value of, and is used in the
following way (note the similar precedence to brackets):

|-3(4) +1|=|-12+1|=]-11]=

1.4 ALTERNATIVE NOTATIONS

The multiplications sign (x) is not always used. It can be replaced by a full
stop type dot (.), thus:

3x4=34=12.

When brackets are employed or alphabetnc letters are used, then it may be
omitted altogether.

3x4=34=3(4)=12 (butnot 34)
However,
yxz=yz=yz=y()
or
2 xy =2y =2y = 2().

The division sign is often written as -+, rather than /.

1.5 EQUALITIES AND INEQUALITIES

If we want to put a statement such as the weight of an apple is 110 g into

mathematical notation then we might first define a quantity x in the
followmg ‘way:

Let x = weight of an a;;ple in grams, then x = 110.
This is an example of an equality, and if we operate on both sides of the



