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Preface

Apart from its own intrinsic interest a knowledge of differentiable manifolds is
useful, and even essential, in a number of areas of mathematics and its applications.
This is not too surprising, since differentiable manifolds are the underlying, if
unacknowledged, objects of study in much of advanced calculus and analysis.
Indeed, such topics as line and surface integrals, divergence and curl of vector
fields, and Stokes’s and Green'’s theorems find their most natural setting in manifold
theory. But however natural the leap from calculus on domains of Euclidean space
to calculus on manifolds may be to those who have made it, it is not at all easy
for most students. It usually involves many weeks of concentrated work with very
general concepts (whose importance is not clear until later) during which the
relation to the already familiar ideas in calculus and linear algebra becomes lost—
not irretrievably, but for all too long. Simple but nontrivial examples that illustrate
the necessity for the high level of abstraction are not easy to present at this stage,
and a realization of the power and utility of the methods must often be postponed
for a dismayingly long time. This book was planned and written as a text for a
two-semester course designed to overcome, or at least to minimize, some of these
difficulties.

Although in overall content it necessarily overlaps various available excellent
textbooks on manifold theory, there are differences in presentation and emphasis
which make it particularly suitable as an introductory text. It is more elementary
and less encyclopedic than many books on this subject. Special care has been
taken to review and then to develop the connections with advanced calculus. In
particular all of Chapter II is devoted to functions and mappings on open sub-
sets of Euclidean space, including a careful exposition and proof of the inverse
function theorem. Efforts are made throughout to introduce new ideas gradually
and with as much attention to intuition as possible. This has led to a longer but
more readable presentation of inherently difficult material. When manifolds are
first defined an effort is made to have as many nontrivial examples as possible; for
this reason Lie groups, especially matrix groups, and certain quotient manifolds
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are introduced early and used throughout as examples. Many problems (more than
400) are included to develop intuition and computational skills. Further, there has
been a conscious effort to avoid or at least to economize generality insofar as that
is possible. Concepts are often introduced in a rather ad hoc way with only the
generality needed and, if possible, only when they are actually needed for some
specific purpose. This is particularly noticeable in the treatment of tensors—which
is far from general—and in the brief introduction to vector bundles (more precisely
to the tangent bundle).

Thus it is not claimed that this is a comprehensive book; the student will
emerge with gaps in his knowledge of various subjects treated (e.g., Lie groups or
Riemannian geometry). On the other hand it is expected that students will acquire
strong motivation, computational skills, and a feeling for the subject that will make
it easy for them to proceed to more advanced work in any of a number of areas using
manifold theory: differential topology, Lie groups, symmetric and homogenoeus
spaces, harmonic analysis, dynamical systems, Morse theory, Riemann surfaces,
and so on.

In nearly every stage results are included that illustrate the power of the new
concepts. Chapter VI is especially noteworthy in this respect in that it includes
complete proofs of Brouwer’s fixed point theorem and of the nonexistence of
nowhere-vanishing continuous vector fields on even dimensional spheres. In a
similar vein the existence of a bi-invariant measure on compact Lie groups is
demonstrated and applied to prove the complete reducibility of their linear repre-
sentations. Then, in a later.chapter, compact groups are used as simple examples
of symmetric spaces, and their corresponding geometry is used to prove that every
element lies on a one-parameter subgroup.

In the last two chapters, which deal with Riemannian geometry of abstract
n-dimensional manifolds, the relation to the more easily visualized geometry of
curves and surfaces in Euclidean space is carefully spelled out and is used to
develop the general ideas for which such applications as the Hopf-Rinow theorem
are given. Thus, by a selection of accessible but important applications, some
truly nontrivial, unexpected (to the student) results are obtained from the abstract
machinery so patiently constructed.

ORGANIZATION AND PREREQUISITES

Briefly, the organization of the book is as follows. Chapter I is a very intuitive
introduction and fixes some of the conventions and notations that are used. Chap-
ter II is largely advanced calculus and may very well be omitted or skimmed by
better prepared readers. In Chapter III, the basic concept of differentiable mani-
fold is introduced along with mappings of manifolds and their properties; a fairly
extensive discussion of examples is included. Chapter IV is particularly concerned
with vectors and vector fields and with a careful exposition of the existence the-
orem for solutions of systems of ordinary differential equations and the related
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one-parameter group action. In Chapter V covariant tensors and differential forms
are treated in some detail and then used to develop a theory of integration on
manifolds in Chapter VI. Numerous applications are given.

It would be possible to use Chapters II-V1 as the basis of a one-semester course
for students who wish to learn the fundamentals of differentiable manifolds with-
out any Riemannian geometry. On the other hand, for students who already have
some experience with manifolds, Chapters VII and VIII could serve as a brief
introduction to Riemannian geometry. In these last two chapters, beginning from
curves and surfaces in Euclidean space, the concept of Riemannian connection
and covariant differentiation is carefully developed and used to give a fairly exten-
sive discussion of geodesics—including the Hopf-Rinow theorem—and a shorter
treatment of curvature. The natural (bi-invariant) geometry on compact Lie groups
and Riemannian manifolds of constant curvature are both discussed in some detail
as examples of the general theory. The discussion of the latter is based on a fairly
complete treatment of covering spaces, discontinuous group action, and of the
fundamental group given earlier in the book.

This text is appropriate for a two-semester course intended to lead the student
from a reasonable mastery of advanced (multivariable) calculus and a rudimentary
knowledge of general topology and linear algebra to a working knowledge of
differentiable manifolds, including some facility with the basic tools of manifold
theory: tensors, differential forms, Lie and covariant derivatives, multiple integrals,
and so on.

The prerequisites are minimal: some knowledge of advanced (multivariable)
calculus, a semester of linear algebra, and a some general topology. However, some
mathematical maturity, that is, the ability to follow proofs and formal reasoning,
is certainly needed.

ABOUT THIS EDITION
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I INTRODUCTION TO MANIFOLDS

In this chapter, we establish some preliminary notations and give an intuitive, geometric discussion
of a number of examples of manifolds—the primary objects of study throughout the book. Most of
these examples are surfaces in Euclidean space; for these—together with curves on the plane and in
space—were the original objects of study in classical differential geometry and are the source of much
of the current theory.

The first two sections deal primarily with notational matters and the relation between Euclidean
space, its model R", and real vector spaces. In Section 3 a precise definition of topological manifolds
is given, and in the remaining sections this concept is illustrated.

1 Preliminary Comments on R"
Let R denote the real numbers and R" their n-fold Cartesian product

n

e e

Rx---xR,
the set of all ordered n-tuples (x', . .., x") of real numbers. Individual n-tuples may
be denoted at times by a single letter. Thus x = (x',...,x"),a = (@', ...,a"),

and so on. We agree once and for all to use on R" its topology as a metric space

1




2 I INTRODUCTION*TO MANIFOLDS

with the metric defined by

- 1/2
d(x,y) = (Z(x" & y")2> :
i=l

The neighborhoods are then open balls B (x), or B.(x) or, equivalently, open
cubes C? (x), or C(x) defined for any £ > 0 as

B.(x)={y eR"| d(x,y) < ¢},
and
C:x)={yeR"||x=yl'<ei=1,...,n},

a cube of side length 2¢ and center x, respectively. Note that R' = R and we define
R to be a single point.

Although we shall invariably consider R" with the topology defined by the
metric, this space R" is used in several senses and we must usually decide from
the context which one is intended. Sometimes R" means merely R” as topological
space, sometimes R" denotes an n-dimensional vector space, and sometimes it is
identified with Euclidean space. We will comment on this last identification in
Section 2 and examine here the other meanings of R”.

We assume that the definition and basic theorems of vector spaces over R are
known to the reader. Among these is the theorem which states that any two vector
spaces over R which have the same finite dimension n are isomorphic. It is impor-
tant to note that this isomorphism depends on choices of bases in the two spaces;
there is in general no natural or canonical isomorphism independent of these
choices. However, there does exist one important example of an n-dimensional
vector space over R which has a distinguished or canonical basis—a basis which
is somehow given by the nature of the space itself. We refer to the vector space of n-
tuples of real numbers with componentwise addition and scalar multiplication. This
is, as a set at least, just R"; should we wish on occasion to avoid confusion, then we
will denote it by V" (and use boldface for its elements (x instead of x, and so forth).
For this space the n-tuplese; = (1,0,...,0),...,e, = (0,0,...,0, 1) areabasis,
known as the natural or canonical basis. We may at times suppose that the n-tuples
are written as rows, thatis, 1 x n matrices, and at other times as columns, thatis, n x 1
matrices. This only becomes important should we wish to use matrix notation to
simplify things a bit; for example, to describe linear mappings, equations, and so on.

Thus R" may denote a vector space of dimension n over R. We sometimes
mean even more by R". An abstract n-dimensional vector space over R is called
Euclidean if it has defined on it a positive definite inner product. In general there
is no natural way to choose such an inner product, but in the case of R" or V",
again we have the natural inner product

@y =) xy.
i=1
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It is characterized by the fact that relative to this inner product the natural basis is
orthonormal, (e;, €;) = §;;.

Thus at times R" is a Euclidean vector space, but one which has a built-in
orthonormal basis and inner product. An abstract vector space, even if Euclidean,
does not have any such preferred basis. The metric in R” discussed at the beginning
can be defined using the inner product on R”. We define ||x||, the norm of the vector
x, by |Ix]l = ((x, x))'/2. Then we have

dx,y) = x-yl.

This notation is frequently useful even when we are dealing with R" as a metric
space and not using its vector space structure. Note, in particular, that ||x|| =
d(x, 0), the distance from the point x to the origin. In this equality x is a vector
on the left-hand side, and x is the corresponding point on the right-hand side; an
illustration of the way various interpretations of R” can be mixed together.

Exercises

1. Show that if A is an m x n matrix, then the mapping from V" to V" (with
elements written as n x 1 and m x 1 matrices), which is defined by y =
Ax, is continuous. Identify the images of the canonical basis of V" as linear
combinations of the canonical basis of V.

2. Find conditions for the mapping of Exercise 1 to be onto; to be one-to-one.

3. Show that if W is an n-dimensional Euclidean vector space, then there exists
an isometry, that is, an isomorphism preserving the inner product, of W onto
R" interpreted as Euclidean vector space.

4. Show that if C", the space of n-tuples of complex numbers, may be placed
in one-to-one correspondence with R*". Can this correspondence be a vector
space isomorphism?

5. Exhibit an isomorphism between the vector space of m x n matrices over R
and the vector space R™". Show that the map X — AX, where A is a fixed
m x m matrix and X is an arbitrary m x n matrix (over R), is continuous in
the topology derived from R™".\

6. Show that ||x|| has the following properties:

@ lIxEyl < lIxll + lyl;
®) lxll = lyll < lIx —yli;
(© llex|| = |a|lIx]l, « € R; and
(d) explain how (a) is related to the triangle inequality of d(x, y).

7. Prove that every Euclidean vector space V has an orthonormal basis. Construct
your proof in such a way that if W is a given subspace of V, dim W = r, then
the first r vectors of the basis of V are a basis of W.

8. Show that an isometry of a Euclidean vector space onto itself is represented
by an orthogonal matrix relative to any orthonormal basis.
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2 R" and Euclidean Space

Another role which R" plays is that of a model for n-dimensional Euclidean
space E", in the sense of Euclidean geometry. In fact many texts simply refer to R"
with the metric d(x, y) as Euclidean space. This identification is misleading in the
same sense that it would be misleading to identify all n-dimensional vector spaces
with R"; moreover unless clearly understood, it is an identification that can hamper
clarification of the concept of manifold and the role of coordinates. Certainly Euclid
and the geometers before the seventeenth century did not think of the Euclidean
plane or three-dimensional space—which we denote by E? and E*—as pairs or
triples of real numbers. In fact they were defined axiomatically beginning with
undefined objects such as points and lines together with a list of their properties—
the axioms—from which the theorems of geometry were then deduced. This is the
path which we all follow in learning the basic ideas of Euclidean plane and solid
geometry, about which most of us know quite a bit before studying analytic or
coordinate geometry at all. The identification of R" and E" came about after the
invention of analytic geometry by Fermat and Descartes and was eagerly seized
upon since it is very tricky and difficult to give a suitable definition of Euclidean
space, of any dimension, in the spirit of Euclid, that is, by giving axioms for
(abstract) Euclidean space as one does for abstract vector spaces. This difficulty
was certainly recognized for a very long time, and has interested many great
mathematicians. It led in part to the discovery of non-Euclidean geometries and
thus to manifolds. A careful axiomatic definition of Euclidean space is given by
Hilbert [1]. Since our use of Euclidean geometry is mainly to aid our intuition, we
shall be content with assuming that the reader “knows” this geometry from high
school.

Consider the Euclidean plane E as studied in high school geometry; definitions
are made, theorems proved, and so on, without coordinates. One later introduces
coordinates using the notions of length and perpendicularity in choosing two mu-
tually perpendicular “number axes” which are used to define a one-to-one mapping
of E? onto R?> by p — (x(p), y(p)), the coordinates of p € E”. This mapping is
(by design) an isometry, preserving distances of points of E? and their images in
R?. Finally one obtains further correspondences of essential geometric elements,
for example, lines of E? with subsets of R consisting of the solutions of linear
equations. Thus we carry each geometric object to a corresponding one in R>. It
is the existence of such coordinate mappings which make the identification of E>
and R? possible. But caution! An arbitrary choice of coordinates is involved, there
is no natural, geometrically determined way to identify the two spaces. Thus, at
best, we can say that R* may be identified with E? plus a coordinate system. Even
then we need to define in R? the notions of line, angle of lines, and other attributes
of the Euclidean plane before thinking of it as Euclidean space. Thus, with qual-
ifications, we may identify E? and R? or E" and R", especially remembering that
they carry a choice of rectangular coordinates.
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We conclude with a brief indication of why we might not always wish to make
the identification, that is, to use the analytic geometry approach to the study of a
geometry. Whenever E” and R" are identified it involves the choice of a coordinate
system, as we have seen. It then becomes difficult at times to distinguish underlying
geometric properties from those which depend on the choice of coordinates. An
example: Having identified E? and R? and lines with the graphs of linear equations,
for instance,

L={(x,y)|y=mx+b},

we define the slope m and the y-intercept b. Neither has geometric meaning; they
depend on the choice of coordinates. However, given two such lines of slope m |, m,
the expression (m, — m) /(1 + mm;) does have geometric meaning. This can be
demonstrated by directly checking independence of the choice of coordinates—a
tedious process—or determining that its value is the tangent of the angle between
the lines, a concept which is independent of coordinates! It should be clear that it
can be difficult to do geometry, even in the simplest case of Euclidean geometry,
working with coordinates alone, that is, with the model R". We need to develop
both the coordinate method and the coordinate-free method of approach. Thus we
shall often seek ways of looking at manifolds and their geometry which do not
involve coordinates, but will use coordinates as a useful computational device (and
more) when necessary.

Being aware now of what is involved, we shall usually refer to R" as Euclidean
space and make the identification. This is especially true when we are interested
only in questions involving topology—as in the next section—or differentiability.

Exercises

1. Using standard equations for change of Cartesian coordinates, verify that
(my — my)/(1 + mm,) is independent of the choice of coordinates.

2. Similarly, show that ((x;—x1)*+(y2—y1)?)"/? is a function of points Py (x;, y;)
and P,(x», y,) which does not depend on the choice of coordinates.

3. How do we describe the subset of R" which corresponds to a segment pg in
E"? to a line? to a 2-plane not through the origin?

If we wish to prove the theorems of Euclidean geometry by analytical geometry methods, we need
to define the notion of congruence. We say that two figures are congruent if there is a rigid motion of
the space, that is, an isometry or distance-preserving transformation, which carries one figure to the
other.

4. Identifying E?> with R?, describe analytically the rigid motions of R>. Show
that they form a group.



