

HHP

Sustainable Retrofitting of Commercial Buildings Cool climates

SUSTAINABLE RETROFITTING OF COMMERCIAL BUILDINGS

EDITED BY SIMON BURTON

First published 2015 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2015 Simon Burton

The right of the editor to be identified as the author of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Sustainable retrofitting of commercial buildings. Cool climates / edited by Simon Burton.

pages cm

Includes bibliographical references and index.

 Commercial buildings–Remodeling. 2. Sustainable buildings–Design and construction. 3. Sustainable construction. 4. Commercial buildings–Energy conservation. 5. Buildings–Energy conservation.
 Burton, Simon, 1945– TH4311.S87 2014

690'.24-dc23

2014005759

ISBN: 978-0-415-83424-7 (hbk) ISBN: 978-1-315-76587-7 (ebk)

Typeset in Univers by Keystroke, Station Road, Codsall, Wolverhampton

Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall

SUSTAINABLE RETROFITTING OF COMMERCIAL BUILDINGS

Whilst sustainability is already an important driver in the new building sector, this book explores how those involved in refurbishment of commercial building are moving this agenda forward. It includes chapters by developers, surveyors, cost consultants, architects, building physicists and other players, on the role they can each play in enabling refurbishment to be commercially, environmentally and socially sustainable. Case studies from northern climates show real examples of different building types, ages and uses and will demonstrate what action has been taken to create more sustainable buildings.

The chapters raise and discuss all the relevant issues that need to be considered in retrofitting decision-making. Changing standards, planning, process management, financing, technical issues, site organisation, commissioning and subsequent building management are all considered. *Sustainable Retrofitting of Commercial Buildings* demonstrates that buildings can be made comfortable to occupy, easy to manage and low in energy demand and environmental impact.

Simon Burton has worked in the field of energy conservation in buildings and urban areas for more than twenty years. He was a Director of ECD Energy and Environment and subsequently a Regional Director with AECOM in London. He has been responsible for several UK government research projects.

NOTES ON CONTRIBUTORS

Simon Burton, BSc, Editor

Simon Burton originally trained as an engineer and urban planner. He subsequently worked in the field of energy conservation in buildings and urban areas for more than twenty-five years. He was a Director of ECD Energy and Environment and subsequently a Regional Director with the Sustainable Development Group at AECOM in London, previous Faber Maunsell. For several years he lived in Brussels and carried out many European Commission supported projects on energy efficiency and renewable energy sources in both new and existing buildings. Low-carbon refurbishment of buildings has been a focus area in the last ten years, leading to editing of 'Energy Efficient Office Refurbishment' in 2001 and writing *The Handbook of Sustainable Refurbishment: Housing*, published by Earthscan/Routledge in 2011.

John Davies, Nat.Dip BSc (Hons) MSc

John Davies is the Head of Sustainability at Derwent London plc and is responsible for creating and leading the company wide sustainability agenda. John is a highly experienced sustainability management professional, with over fifteen years in industry. He is recognised as an expert in several sectors, in particular commercial property, and has developed and led the creation of many industry leading tools and initiatives. He writes extensively in the sustainability press and sits on many industry panels and committees.

Prior to joining Derwent London, John was Head of Sustainability at Davis Langdon where he was responsible for developing and delivering its range of sustainability services and forming strong relationships across its key client base. Before joining Davis Langdon, John worked in the client domain as a sustainability advisor on a range of major projects and organisations, most notably at BAA, where he lead the sustainability agenda within the T5 design phase and the £10bn Capital Projects function as their Capital Projects Sustainability Manager.

Ursula Hartenberger

Having worked on environmental and corporate responsibility issues for a number of global organisations operating in a variety of sectors, Ursula Hartenberger joined RICS in 2006 as Head of EU Policy and Public Affairs, leading the organisation's strategy on energy efficiency, sustainable construction and urban development. In 2009, she took on the role of RICS Global Head of Sustainability and is responsible for coordinating the organisation's strategic activities with regard to capacity building, communication, research and global engagement with decision-makers and sectoral partners. She is member of a series of international sustainable development platforms and stakeholder groups and has been closely involved in RICS publications and initiatives regarding the value implications of sustainability in the built environment and associated investment decision-making. Holding a Masters Degree in Art Market Valuation, Ursula writes for external publications and academic journals and is a regular speaker at international conferences.

Bill Gething, MA (Cantab) Dipl Arch RIBA

Bill Gething is Professor of Architecture at the University of the West of England, an architect and sustainability consultant, having been a longstanding partner of the architectural and urban design practice Feilden Clegg Bradley Studios. He is a Visiting Professor at the University of Bath and an external examiner at the Architectural Association and the Bartlett School of Architecture, UCL.

He was the RIBA President's Sustainability Advisor from 2003 to 2009 and was lead author of the Green Overlay to the RIBA Plan of Work in 2011. He wrote a briefing report in 2010 setting out the agenda for climate adaptation in the built environment to support design teams involved with UK Technology Strategy Board's Design for Future Climate programme and has drawn out lessons learnt in the first tranche of funded projects in his book *Design for Climate Change*.

Nigel Addy, BSc (Hons) MRICS

Nigel is a Chartered Quantity Surveyor and is a Director at AECOM. Nigel has over twenty-eight years of experience in the construction industry covering a broad range of building projects and types.

Nigel is based in London as part of the Commercial Office team and specialises in refurbishment projects. He was on the Steering Group with CIRIA for their publication *Good Practice Guidance for the Refurbishing of Occupied Buildings*. He is also the author of the 'Cost Model for Office Refurbishments' published in *Building* magazine. He has been involved in many refurbishments projects with established leading property developers in London such as Derwent London and Land Securities, and buildings such as The Johnson Building, Page Street, 80 Charlotte Street and 20 Eastbourne Terrace.

He is experienced in understanding the cost drivers for refurbishment in order to provide clients with the right strategic advice for a successful project.

Dan Staniaszek, MA (Oxon) MSc CEng MEI

Dan heads up Sustainability Consulting Ltd, offering freelance consultancy services in the sustainable energy space. He is currently working with the Brussels-based Building Performance Institute Europe, where his responsibilities have included heading up BPIE's data management, renovation and financing portfolios, as well as developing BPIE's modelling and scenario analysis capabilities. His current role builds on a broad experience base spanning twenty-seven years, including fifteen in senior positions. In various advisory roles in the UK public/non-profit sector at national, regional and local level, he has influenced the design of EU Directives and UK energy policy, including the Renewables Obligation and the Energy Efficiency Obligation, and directed a wide variety of initiatives, including evaluation, certification and knowledge management services. He has also worked with numerous UK and international consultancies.

Lizi Cushen, M Arca ARB

Having studied at the Royal College of Art in London, and had previous experience working for acclaimed UK Passivhaus practitioner, Justin Bere, Lizi joined Allford Hall Monaghan Morris in 2010 as a Part II Architectural Assistant. She qualified as an Architect from Cambridge University in 2012 and has a broad range of experience on residential, commercial and public realm schemes including Green Tea, London. Lizi was also Project Architect for AHMM's BREEAM Outstanding offices, completed in 2013.

She takes an active role in AHMM's sustainability working group which has successfully promoted low energy design across the practice and is working to develop the practice's reference library.

Nick Baker

Nick Baker qualified in physics and after a brief period working in medical physics, he moved to building science as a teacher, researcher and consultant. He has recently retired from University of Cambridge Department of Architecture, where he was involved with several EU-funded research projects, mainly in the fields of building energy, daylight, natural ventilation and comfort, on which he has published many papers. During this time he has written several books, including *The Handbook of Sustainable Refurbishment*, and contributed to others on comfort and sustainability.

David Richards, BSc (Hons) CEng

David Richards is a Director of building design in Arup. Originally a mechanical engineer he has developed an understanding of integrated design founded on a rich and varied project experience in the UK, America and Middle East. Since 2012 he has been leading the facades team in London and the UK. Dave's particular skills are the strategic planning of the building form, facade performance and passive low energy design. He has a particular focus on the energy performance of the building envelope and the interaction with the mechanical and passive systems of a building. He has led integrated engineering teams on a variety of projects including headquarter office buildings, commercial developments, cultural facilities, university campus buildings and airports.

Dave has a strong interest in the subject of learning and has been a visiting tutor of environmental design at the Architectural Association, The Bartlett, MIT, Columbia University and the University of Pennsylvania.

Ljubomir Jankovic, BSc PhD FIAP CEng MCIBSE

Ljubomir Jankovic has worked as an academic, researcher and practitioner on instrumental monitoring, dynamic simulation, and environmental design of buildings for almost three decades. He studied for his undergraduate degree at the University of Belgrade and his PhD at the University of Birmingham. He is a Chartered Engineer, a Member of CIBSE, and a Fellow of the Institution of Analysts and Programmers. His book *Designing Zero Carbon Buildings Using Dynamic Simulation Methods* was published by Routledge in 2012. He was conferred as Professor of Zero Carbon Design by Birmingham City University in 2013.

Paul Appleby, BSc (Hons) CEng FCIBSE FRSA

Paul Appleby advises design and master-planning teams on the integrated sustainable design of buildings and communities. He has worked in the construction industry as a consultant, lecturer and researcher for forty-five years, working on award winning projects with some of the world's leading architects and developers. As well as writing some seventy publications, including key guidance published by CIBSE and others, his book *Integrated Sustainable Design of Buildings* has appeared in a list of the Cambridge University's 'Top 40 Sustainability Books of 2010'. His follow up, *Sustainable Retrofit and Facilities Management* was published in January 2013. He is a Built Environment Expert for the Commission for Architecture and the Built Environment (Cabe), involved in Design Reviews for major projects seeking planning approval, and is actively involved with the UK Green Building Council, sitting on its Policy Committee and Retrofit Incentives Task Group.

PREFACE AND ACKNOWLEDGEMENTS

This book is the companion volume to one with the same title for 'Warm Climates' published by Earthscan/Routledge in 2013, edited by Professor Richard Hyde from Sydney University. Many of the buildings issues are similar for both cold and warm climates, and with climate change this is likely to become more so in the future. For this and other reasons, the approach taken in this book is to focus on the buildings industry and examine how the various players are thinking about and responding to the challenge of sustainable retrofitting of our existing non-domestic buildings, be they historic, outdated, unmanageable, energy guzzlers or simply ready to be refurbished.

The authors of the various chapters are experts in their field, drawn from leading companies, universities and other organisations. The content of the chapters is therefore the view of the individual authors and although this inevitably leads to some overlap and differences of opinion, and many stylistic differences, the whole book has been designed and edited to give a comprehensive picture of the subject, from different perspectives. As the authors are mostly the partners, or typically represent the partners, necessary for major refurbishment projects, we can understand how the different approaches and emphases need to be brought together for a successful product.

As well as acknowledging the contributions of all the chapter authors, it is important to remember all those contributing information for the case studies included in Chapter 15. Many people are involved before a good case study can be presented and these case studies are short summaries only of many years of work, leading to insights into the real world of commercial refurbishment.

My thanks therefore go to all the chapter authors, those providing information and text for the case studies, all the organisations providing back up and permission to use their buildings as case studies, and the photographers who in all cases have given their photographs for free. Several other individuals have been most helpful, offering suggestions, information, comment and support and I would particularly like to thank Nic Crawley, Roderic Bunn and Lionel Delorme in this context. Additionally there are others without whose support this book would never have been produced, at Routledge, Nicki Dennis for the invitation and support and Alice Aldous for constant organisational back up, and my partner Daphne Davies for unfailing encouragement and enthusiasm for the project.

CONTENTS

	OF FIGURES	vii
	OF TABLES	xi
	ES ON CONTRIBUTORS FACE AND ACKNOWLEDGEMENTS	XIII
FNE	AGE AND ACKNOWLEDGEMENTS	XVII
	INTRODUCTION Simon Burton	1
1	DESIGNING FOR NEW USES, STANDARDS AND REQUIREMENTS IN THE TWENTY-FIRST CENTURY John Davies	10
2	VALUE AS A DRIVER FOR SUSTAINABLE REFURBISHMENT OF COMMERCIAL BUILDINGS: A EUROPEAN PERSPECTIVE Ursula Hartenberger	23
3	RESILIENCE TO A CHANGING CLIMATE Bill Gething	36
4	MAKING SUSTAINABLE REFURBISHMENT OF EXISTING BUILDINGS FINANCIALLY VIABLE Nigel Addy	57
5	THE CURRENT ENERGY PERFORMANCE OF COMMERCIAL BUILDINGS IN NORTHERN CLIMATES: EUROPE Dan Staniaszek	74
6	EFFECTING DESIGN PROCESSES AND PRACTICES FOR SUSTAINABLE REFURBISHMENT Lizi Cushen	91
7	RETROFITTING FOR COMFORT AND INDOOR ENVIRONMENTAL QUALITY Nick Baker	100
8	ENERGY-EFFICIENT PRINCIPLES AND TECHNOLOGIES FOR RETROFITTING Simon Burton	125
9	THE IMPORTANCE OF FACADE DESIGN David Richards	140

۷

CONTENTS

10	ENVIRONMENTAL ASSESSMENT RATING SCHEMES Simon Burton	161
11	ENERGY AND COMFORT MODELLING TOOLS Ljubomir Jankovic	170
12	WATER, WASTE, MATERIALS AND LANDSCAPE Paul Appleby	192
13	ON-SITE CONSTRUCTION Paul Appleby	210
14	INTEGRATING DESIGN AND USE: THE 'SOFT LANDINGS' PHILOSOPHY Simon Burton	225
15	CASE STUDIES	236
INDEX		312

vi

此为试读,需要完整PDF请访问: www.ertongbook.com

LIST OF FIGURES

0.1	The performance gap	8
1.1	Relationship between sustainability in property and good	
	design	13
1.2	Snapshot UK regulatory timeline	15
1.3	The Tea Building	19
1.4	White Collar Factory, London	21
2.1	Property valuation and financial decision-making touch	
	points along the Property Life Cycle	25
2.2	Current market barriers to large-scale uptake of sustainable	
	refurbishment of commercial buildings	30
2.3	Corporate decision-making drivers for sustainable	
	refurbishment investments in commercial property	33
3.1	ProCliP graph showing the summer mean daily maximum	
	temperature	40
3.2	Predicted Adaptive Comfort Threshold levels for Leeds,	
	UK through the century	44
3.3	Balance of heat inputs and losses from a building in a cool	
	climate	45
4.1	The lifetime of mechanical plant	63
4.2	The lifetime of electrical plant	64
4.3	Levels of refurbishment with example 2013 costs for	
	central London location	70
5.1	Degree day spread across EU-27, Norway and Switzerland	77
5.2	End use energy requirements in European non-residential	
	buildings	78
5.3	Final energy use in the non-residential sector – EU-27 +	
	Norway and Switzerland	78
5.4	Breakdown of building type by floor area and country	80
5.5	Specific energy use (kWh/m²/year) across different building	
	sectors – selected countries	81
5.6	Prevalence of different measures installed in the	
	GreenBuilding Programme	86
6.1	The AHMM Toolkit components	94
6.2	High Achiever (Weston Street) vs. Room for Improvement	
	(Maywood Park)	95
6.3	Rotary RIBA stages	97
7.1	The four components of heat loss from the body.	
	Conventional comfort theory seeks to balance total heat	
	loss with metabolic heat gain at all times	102
7.2	Human stress response to swings in an environmental	
	stimulus (such as temperature) and its relation to the	
	presence of adaptive opportunity	103

LIST OF FIGURES

7.3	Coupling between thermal mass, sources of heat gain, and the occupants is essential for thermal mass to be effective. (A) solar radiation converted to heat at sun patch, (B) heat lost by radiation and convection to thermal mass in soffit,	
	(C) heat lost from occupant to thermal mass	108
7.4	The impact of double-glazing on mean radiant temperature	100
	and comfort close to window	109
7.5	The mechanism of transmission, reflection and absorption	
	for glass. Absorbed radiation heats up the glass. This heat	
	is lost by long-wave radiation and convection to the	
	outside and to the room	110
7.6	Improvement to daylight penetration by removing	
	suspended ceiling and installation of glazing in upper wall	111
7.7	Window design for enhanced noise reduction for natural	
	ventilation in noisy locations	115
7.8	Acoustic absorbing banners and partitions providing	
	absorption whilst leaving thermal mass in floor/ceiling	
	slab exposed	117
7.9	The impact of the thermostatic control to break the	
	natural feedback loop in occupant control	122
8.1	Breakdown of building energy use	127
8.2	Borrowed light in corridors and internal rooms	128
8.3	A new atrium attached to an existing building. Photovoltaic	
	panels are used as shading	129
8.4	Ground-sourced heating or cooling	132
8.5	Solar shading fixed to an existing facade	134
8.6	Phase-change material ready to install	135
8.7	Large-scale photovoltaic modules mounted on a roof	139
9.1	Guy's Hospital, London. The new facade was installed in	
	front of the original one	142
9.2	Lloyds of London. The floor-to-ceiling glazing was replaced	
	in order to improve the thermal/solar performance and to	
	allow for more daylight	145
9.3	Unilever House, London. Facade retention, the stone-clad,	
	steel-framed facade was upgraded with insulation and	
	vapour barriers	147
9.4	210–211 Piccadilly, London. The Portland stone and brick	
	facade was dismantled and rebuilt 1.5 m higher, on top of	1.10
0.5	a new ground and first floor structure	149
9.5	Improving the thermal performance of uninsulated existing	150
0.0	facades by adding insulation	153
9.6	Thermal analysis of framing details	154
9.7	Airtightness testing	156
9.8	Checking the thermal performance of an existing facade	4
	using thermal imaging	157

9.9	The Empire State Building, New York. More than 6,500	
	windows were replaced outside of working hours	158
11.1	Baseline energy performance assessment with CIBSE	
	TM22	174
11.2	DesignBuilder. (a) Rendered geometry; (b) simulation	
	results	177
11.3	Predicted percentage of dissatisfied	180
11.4	CFD-generated temperature and velocity contours and	100
44.5	post-processed PMV and PPD	182
11.5	Building response function in the form of Fourier filter	185
12.1 12.2	Waterless urinal: typical outlet showing operating principle	195 200
12.2	Japanese knotweed Giant hogweed	200
12.3	Example of permeable block paving make up suitable for	201
12.4	car park SUDS	203
12.5	Swale under construction with completed one behind	200
13.1	Typical enclosure for asbestos removal	214
13.2	Flexible chutes for conveying rubble from multi-storey	
	building refurbishment	217
14.1	The energy performance gap	226
14.2	Alignment of the Soft Landings stages with the 2013 RIBA	
	Plan of Work, and the 2007 edition of the CIC Scope of	
	Services	229
15.1	The transformed building sits more comfortably with the	
	scale, rhythm and materiality of Winchester	240
15.2	Original buílding	240
15.3	Ventilation strategy	241
15.4	Shading devices on the west facade	243
15.5	Transformed modern office interior and diversity of space	50 C 7 C 7
	supports flexible working	246
15.6	Central courtyard after refurbishment	249
15.7	The original printing offices	250
15.8	Post-refurbishment offices	251 252
15.9 15.10	Installing the ground-sourced cooling Monitoring was initially carried out for two years	252
15.10	Post-refurbishment space	255
15.11	The listed south facade wall along the canal	250
15.12	The first-floor space below the listed oak trusses	257
15.14	Cutaway of the refurbished building with sustainability	207
10.14	measures	259
15.15	The new northern facade	261
15.16	The single-volume, two-storey design studio	262
15.17	The Angel Building, now a thriving hub	263
15.18	Aerial view of the site	264
15.19	The original building	264

15.20	The building frame retained	266
15.21	New external landscaping	268
15.22	View of the atrium from above	271
15.23	The refurbished building	272
15.24	The building before refurbishment	273
15.25	Building plan	274
15.26	Inside windows after renovation	275
15.27	Calculated energy use	276
15.28	The building retrofit is deemed a great success	277
15.29	Inside Colombo	279
15.30	Lighting improvements	281
15.31	Indoor air quality has been greatly improved	282
15.32	Flooring used alternatives to PVC	284
15.33	The new roof garden	285
15.34	The near-derelict building before renovation	287
15.35	The refurbished headquarters	288
15.36	The biomass boilers	290
15.37	The new office	292
15.38	Facade before refurbishment	293
15.39	Blocks with the new facade	294
15.40	Arrangement of the original blocks	294
15.41	Novel shading system	295
15.42	Pressure testing the building	295
15.43	Underfloor heating installation	296
15.44	The refurbished offices	298
15.45	The original barracks building	298
15.46	Cross-section showing the insulation	299
15.47	Laying the pipes for the brine ground heat exchanger	300
15.48	Central ventilation unit with heat recovery in the roof space	302
15.49	The refurbished building	304
15.50	The original building before refurbishment	304
15.51	The new ventilation strategy	306
15.52	The sun pipes on the roof	307
15.53	A biomass boiler provides most of the heating	309
15.54	The new office accommodation	310
15.55	The new entrance	311

LIST OF TABLES

4.1	The extent of the different types of refurbishment	71
5.1	Building stock by non-residential building sector (EU-27,	
	Norway and Switzerland	79
5.2	EU Final Energy Consumption by Sector (million tonnes of	
	oil equivalent, Mtoe)	81
5.3	Prevailing requirements for new building energy	
	performance across the EU-27, Norway and Switzerland	88
7.1	Properties of shading types and their suitability	113
15.1	Energy consumption breakdown	247

Simon Burton

Most of the world's scientific community believe that the apparent climate change is manmade, being largely caused by emissions from the use of fossil fuels, and we know that around 40 per cent of this energy is used in buildings. Reducing energy use in our building stock is thus a major concern, with the associated need to make the buildings resilient to the climatic changes that are already apparent and inevitably will become more severe in the future.

Energy is used in the materials and process of construction and in all aspects of using and managing the building for as long as it is occupied. The latter includes energy used for the building itself – ventilating, lighting, heating, etc. – the electrical appliances and equipment in and around the building, the water used, transport of people to and from the building, and so on. This book focuses on the decision-making and process of retrofitting existing commercial buildings to use less energy in all these areas and how this can be achieved at the same time as enhancing the other aspects of sustainability, related wider environmental and social issues.

RETROFITTING IS MORE SUSTAINABLE THAN DEMOLITION, BUT CAN WE DO MORE?

Why are we interested in sustainable retrofitting of non-domestic buildings? We know that new buildings can be quite easily built to be environmentally friendly, and legislation inexorably moves us in this direction. But in most countries we have a large stock of offices and other non-housing buildings that are certainly not efficient to run nor necessarily comfortable to work in, so their future must be to either demolish them or refurbish them. There are at least three valid reasons for refurbishment rather than demolition: the building may be an important historic building; it may be capable of refurbishment at lower cost than demolition and new build; or it may be considered that the environmental impact is less if it is refurbished rather than demolished.

1