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PREFACE

This book grew out of two lecture courses given by the first author in Oxford
in 1985 and 1986. These dealt with the applications of Yang Mills theory to 4-
manifold topology, which, beginning in 1982, have grown to occupy an
important place in current research. The content of the lectures was governed
by two main aims, and although the treatment of the material has been
expanded considerably in the intervening years, some of the resulting
structure is preserved in the present work. The primary aim is to give a self-
contained and comprehensive treatment of these new techniques as they have
been applied to the study of 4-manifolds. The second aim is to bring together
some of the developments in Yang-Mills theory itself, placed in the frame-
work of contemporary differential and algebraic geometry. Leaving aside the
topological applications, ideas from Yang-Mills theory——developed by many
mathematicians since the late 1970’s—have played a large part in fixing the
direction of modern research in geometry. We have tried to present some of
these ideas at a level which bridges the gap between general text books and
research papers.

These two aims are reflecied in the organization of the book. The first
provides the main thread of the material and begins in Chapter | with the
“mysteries of 4-manifold topology-—problems which have been well-known in
that field for a quarter of a century. It finishes in the last chapters, when some
of these problems are, in part, resolved. On the way to this goal we make a
number of detours, each with the purpose of expounding a particular area of
interest. Some are only tangentially related, but none are irrelevant to our
principal topic. It may help the reader to signpost here the main digressions.

The first is in Chapter 3, which deals for the most part with the description
of instanton solutions on the 4-sphere; some of the facts which emerge are an
ingredient in later arguments (in Chapters 7 and 8, for example) and serve as a
model for more general results, but their derivation is essentially independent
from the rest of the book. Chapter 6 is concerned with the proof of a key
theorem which provides a route from differential to algebraic geometry. This
result underpins calculations in Chapters 9 and 10, but it could be taken on
trust by some readers. In Chapter 7, only the last section is central to the
subject matter of the book, and the main topological results can be obtained
without the rather lengthy analysis which it contains. The reader who wants
only to discover how Yang-Mills theory has been applied to 4-manifold
topology might want to read only Chapter 1, the first part of Chapter 2, and
Chapters 4, 5, 8, and 9. '

The ten chapters are each reasonably self-contained and could, to a large
extent, be read as individual articles on different topics. In general we have
tried to avoid duplicating material which is readily available elsewhere.
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Almost ail of the results have appeared in research papers but we have spent
some time looking for different, or simplified, proofs and for a streamlined
exposition. Where other books already cover a topic in detail, we have tried to
keep our treatment brief. While we hope that readers with a wide range of
backgrounds will be able to get something useful from the book, we have
assumed a familiarity with a definite body of background material, well
represented in standard texts, roughly equivalent to first-year graduate
courses in topology, differential geometry, algebraic geometry, and global
analysis. The pre-requisites in analysis are summarized in the appendix; for
the other subjects we hope that the references given will enable the reader to
track down what is needed.

There are notes at the end of each chapter which contain a commentary on
the material covered. Nearly all the references have been consigned to these
notes. We feel that this streamlines the main text, although perhaps at the cost
of giving precise references at all points. We have tried to acknowledge the
original sources for the ideas and results discussed, and hasten to offer our
apologies for any oversights in this regard.

Turning away from the content of the book, we should now say what is
missing. First, although the subject of Yang-Mills theory, as an area of
mathematical research, is rooted in modern physics, we have not discussed
this side of the story except in passing. This is not to deny the importance of
concepts from physical theories in the topics we treat. Indeed, throughout the
last decade this area in geometry has been continually enriched by new ideas
from that direction, and it seems very likely that this will continue. We are not,
however, the right authors to provide an account of these aspects. Secondly,
we have not given an exhaustive treatment of all the results on
4-manifolds which have been obtained using these techniques, nor have we
tried to bring the account up-to-date with all the most recent developments;
this area is still very active, and any such attempt would inevitably be
overtaken by events. We hope that, by concentrating on some of the central
methods and applications, we have written a book which will retain its value.
Finally, while we have tried to give a thorough treatment of the theory from its
foundations, we feel that there is still considerable scope for improvement in
this respect. This holds both for a number of technical points and also, at a
more basic ievel, in the general ethos of the interaction between Yang-Mills
theory and 4-manifold topology. The exploratory drive of the early work in
this field has not yet been replaced by any more systematic or fundamental
understanding. Although the techniques described here have had notable
successes, it is at present not at all clear what their full scope is, nor how
essential they are to the structure of 4-manifolds. Looking to the future, one
might hope that quite new ideas will emerge which will both shed light on
these points and also go further in revealing the nature of differential topology
in four dimensions. In any case, we hope that this book will help the reader to
appreciate the fascination of these fundamental problems in geometry and
topology.
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FOUR-MANIFOLDS

This chapter falls into three parts. In the first we review some standard facts
about the geometry and topology of four-manifolds. In the sccond we discuss
a number of results which date back to the 1960’s and before; in particular we
give an account of a theorem of Wall which accurately portrays the limited
success, in four dimensions, of the techniques which were being used to such
good effect at that time in the study of high-dimensional manifolds. This
discussion sets the scene for the new developments which we will describe in
the rest of this book. In the third section we summarize some of the main
results on the differential topology of four-manifolds which have sprung from
these developments. The proofs of these results are given in Chapters 8, 9, and
10. The intervening chapters work, with many digressions, through the
background material required for these proofs. )

This first chapter has an introductory nature; the material is presented
informally, with many details omitted. For thorough treatments we refer to
the sources listed in the notes at the end of the chapter.

1.1 Classical invariants

1.1.1 Homology

In this book our attention will be focused on compact, simply connected,
differentiable four-manifolds. The restriction to the simply connected case
certainly rules out many interesting examples: indeed it is well known that
any finitely presented group can occur as the fundamental group of a four-
manifold. Furthermore, the techniques we will develop in the body of the
book are, in reality, rather insensitive to the fundamental group, and much of
our discussion can easily be generalized. The main issues, however, can be
reached more quickly in the simply connected case. We shall see that for
many purposes four-manifolds with trivial fundamental group are of be-
guiling simplicity, but nevertheless the most basic questions about the
differential topology of these manifoids lead us into new, uncharted waters
where the results described in this book serve, at present, as isolaied markers.

After the fundamental group we have the homology and cohomology
groups, H,(X: Z) and H'(X: Z), of a four-manifold X. For a closed, oriented
four-manifold, Poincaré duality gives an isomorphism between homology
and cohomology in complementary dimensions, i and 4 — i, So, when X is
simply connected, the first and third homology groups vanish and all the
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homological information is contained in H,. The universal coeflicient
theorem for cohomology implies that, when H, is zero, H*(X;Z)
= Hom(H ,(X; Z), Z) is a free abelian group. In turn, by Poincaré duality, the
homology group H, = H? is free.

There are three concrete ways in which we can realize two-dimensional
homology, or cohomology, classes on a four-manifold, and it is useful to be
able to translate easily between them (this is standard practice in algebraic
geometry). The first is by complex line bundles, complex vector bundles of
rank 1. On any space X a line bundle L is determined, up to bundle
isomorphism, by its Chern class ¢, (L) in H?*(X; Z) and this sets up a bijection
between the isomorphism classes of line bundles and H? The second
realization is by smoothly embedded two-dimensional oriented surfaces X in
X. Such a surface carries a fundamental homology class [£] in H,(X). Given
a line bundle L we can choose a genéral smooth section of the bundle whose
zero set is a surface representing the homology class dual to ¢, (L). Third, we
have the de Rham representation of real cohomology classes by differential
forms. )

Let X be a compact, oriented, simply connected four-manifold. (The choice
of orientation will become extremely important in this book.) The Poincaré
duality isomorphism between homology and cohomology is equivalent to a
bilinear form:

Q: Hy(X;Z) x Hy(X:Z) — Z.

This is the intersection form of the manifold. It is a unimodular, symmetric
form (the first condition is just the assertion that it induces an isomorphism
between the groups H, and H* = Hom(H,, 7Z)). We will sometimes write « . 8
for Q(x, f). where xe H,, and also Q(a) or «? for Q(«, ). Geometrically, two
oriented surfaces £,, X, in X, placed in general position, will meet in a finite
set of points. To each point we associate a sign + 1 according to the matching
of the orientations in the isomorphism,

TX =TZ, ® TX,,

of the tangent bundles at that point. The intersection number £, . %, is given
by the total number of points, counted with signs. The pairing passes to
homology to yield the form Q. Going over to cohomology, the form
translates into the cup product:

H*(X) x H*(X) — H*X)=Z.

Thus the form is an invariant of the oriented homotopy type of X (and
depends on the orientation only up to sign). In terms of de Rham cohomo-
logy, if w,, w, are closed 2-forms representing classes dual to X,, X,, the
intersection number Q(X,, £,) is given by the integral:

jwl A Ws.

X
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To see this correspondence between the integration and intersection defini-
tions one chooses forms , supported in small tubular neighbourhoods of the
surfaces. Locally, near an intersection point, we can choose coordinates
(x, y, z,w) on X so that £, is given by the equations x = y = 0, and X, by
z =w = 0. For the dual forms we can take:

w, = Y(x, y)dxdy, w,=y(z, w)dzdw,

where y is a bump function on R?, supported near (0, 0) and with integral 1.
The 4-form w, A w, is now supported near the intersection points, and for
each intersection point we can evaluate the contribution to the total integral
in the coordinates above:

[ y(x, )Y (z, wydxdydzdw= % I

depending on orientations.

If we choose a basis for the free abelian group H,, the intersection form is
represented by a matrix with integer entries. The matrix is symmetric, and has
determinant equal to =+ 1 (this is the unimodular condition—a matrix with
integer entries has an inverse of the same kind if and only if its determinant
is +1). As we will explain below, the form on the integral homology contains
more information than that on the corresponding real vector space H, (X R).
The latter is of course classified up to equivalence by its rank——the second
Betti number b, of the manifold—and signature. Following standard
notation we write . ;
by=b"+b", (1.1.1)

where b*, b~ are the dimensions of maximal positive and negative subspaces
for the form on H,. (In the familiar way we can identify the bilinear form with
the associated quadratic form Q(x).) The signature t of the oriented four-
manifold is then defined to be the signature of the form:

t=bt—b".

1.1.2 Some elementary examples

(i) The four-sphere S* has zero second homology group and so all inter-
section numbers vanish.,

(ii) The complex projective plane CP? is a simply connected four-manifold
whose second homology is Z. The standard generator is furnished by the
fundamental class of a projective line CP' = CPZ. (The projective line is, of
course, diffeomorphic to a two-sphere—the ‘Riemann sphere’.) Two lines
meet in a point and the conventional orientation is fixed so that this self-
intersection number is 1. Thus the intersection form is represented by the

1 x 1 matrix (1). We write CP? for the same manifold equipped with the
opposite orientation; so this manifold has intersection form ( —1). (Note that
there is no orientation reversing diffeomorphism of CP?)
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(iii) In the product manifold $* x S? standard generators for the homology
are represented by the embedded spheres S? x {pt} and {pt} x §2. These
spheres intersect transversely in one point in the four-manifold and each has

; . : ; it {0
zero self-intersection. The intersection matrix is L o)

(iv) We can think of §* x §2 as being obtained from the trivial line bundle
§? x C by compactilying cach fibre separately with a ‘point at infinity’. More
generally we can do the same thing starting with any complex line bundle
over §%. The line bundles are classified by the integers, via their first Chern
class, so we get a sequence of four-manifolds M, d € Z. In each case H, is two
dimensional; we can take generators to be the class of a two-sphere fibre and
the zero section of our original bundle. Then the intersection matrix is

0 1
Qd=<l d)'

Now it is easy to see that there are only two diffeomorphism classes
realized by these manifolds; M, is a diffeomorphic to M, = S? x S* if d is
even and to M, if d is odd. This is because the integer d detects the homotopy
class of the transition function for the original line bundle in = (S*) = Z,
while the manifold M, as the total space of a two-sphere bundle, depends
only on the image of this in 7,(SO(3)) = Z/2. 1t follows of course that the
quadratic forms above depend, up to 1somorphism, only on the parity of d,
which one can readily verify by a suitable change of basis. All the forms have
b* = b7 = 1; however the forms for d odd and d even are not equivalent over
the integers, so M, is not diffeomorphic to S? x S* The two non-equivalent

standard models are: _
i 0 01
. 1.
b ) (o) (1)

We say an integer quadratic form Q is of even type il Q(x) is even for all x in
the lattice, and that the form is of odd type if it is not of even type. Then we see
that the form Q, is even if and only if d is even.

(v) For any two four-manifolds X, X, we can make the connected sum
X, # X, U X,, X, are simply connected, so is the connected sum;
H,(X, 4 X,) is the direct sum of the H,(X) and the intersection form is the
obvious direct sum. Starting with the basic building blocks above, we can
make many more four-manifolds: for example by taking sums of copies of
CP? with appropriate orientations we get manifolds ICP? 4 mCP? with
forms:

diag(l, ..., 1, —1,. .., =)= )@ m(—1).
[ ; m
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In fact the manifold CP? 4 CP? is diffeomorphic to M, of (iv). One can see
this by thinking of the Hopf fibration S' - §* - §2. The complement of a
small ball in CP%can be identified with the disc bundle over $2 (a line in CP?)
associated with this circle bundle. When we make the connected sum we glue
two of these disc bundles, with opposite orientations, along their boundary
spheres to get the $? bundle considered in (iv).

1.1.3 Unimodular forms

How far do these examples go to cover the possible unimodular forms? It
turns out that the algebraic classification of unimodular indefinite forms is
rather simple. Any odd indefinite form is equivalent over the integers to one
of the (1)@ m(—1) and any even indefinite form to one of the family

1
given by the matrix:

0 1 : ; 3 ;
1< 0) @® m Eg, where Eg is a certain positive definite, even form of rank 8§

1,0 ~1
0 2 0 -1
-1 "0 2 —1
: ~1 -1 2 —1
Ey = e © (1.1.3)
-1 2 -1
-1 2 ~1

=1

In other words, indefinite, unimodular forms are classified by their rank,
signature and type. (This is the Hasse-Minkowski classification of indefinite
forms.; Thus we have found, so far, four-manifolds corresponding to all the

0 1 .
odd indefinite forms but only the forms /<1 O) in the even family.

The situation for definite forms is quite different. For each fixed rank there
are a finite number of isomorphism classes, but this number grows quite
rapidly with the rank—there are many exotic forms, E4 being the prototype,
not equivalent to the standard diagonal form. In fact, up to isomorphism,
there is just one even positive-definite form of rank 8, two of rank 16, namely
Ey @Eg and E4, and five of rank 24, including 3E,, Eg @ E, ¢ and the Leech
lattice.

Notice that we only consider above those.definite forms whose rank is a
multiple of eight: this is due to the following algebraic fact. For any
unimodular form @, an element ¢ of the lattice is called characteristic if

Qlc, x) = Q(x, x) mod 2
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for all x in the lattice; then if ¢ is characteristic we have
0(c, ¢) = signature(Q) mod 8. (1.1.4)

If Q is even the element 0 is characteristic, and we find that the signature must
be divisible by 8. (Note that characteristic elements can always be found, for
any form.)

1.1.4 The tangent bundle: characteristic classes and spin structures

In general one obtains invariants of smooth manifolds, beyond the homology
groups themselves, as characteristic classes of the tangent bundle. For an
oriented four-manifold X the characteristic classes available comprise the
Stiefel-Whitney classes w,(TX)e H(X; Z/2) and the Euler and Pontryagin
classes e(X), p,(TX)e H*(X; Z) = 7. The second Stiefel-Whitney class w,
can be obtained from the mod 2 reduction of the intersection form by the Wu’
. formuia:

Qwy(TX),) = Q(or,0) mod?2, (1.1.5)

for all « € H*(X;Z/2). This is especially easy to see when X is simply
connected. Then any mod 2 class is the reduction of an integral class and so
can be represented by an oriented embedded surface . We have:

Wy (TX)[Z]) = Wy (TE @ vp) [E]) = (wy(TE) + wa(ve), [Z1D,

where vy is the normal bundle. The Wu formula follows for, on the oriented
two-plane bundles T'X and vy, the class w, is the mod 2 reduction of the Euler
class; e(vy) is the self-intersection number £.X of X, and e(7TY) is the Euler
characteristic 2 — 2-genus (X), which is even. It is in fact the case that for any
oriented four-manifold w, and w; are both zero. This is trivial for simply
connected manifolds and we see that in this case the Stiefel-Whitney classes
give no extra information beyond the integral intersection form.

The Euler and Pontryagin classes of a four-manifold can both be obtained
from the rational cohomology ring. For the Euler class we have the el-
ementary formula

‘ e(TX) = X(—1)b,,

the alternating sum of the Betti numbers b;. The Pontryagin class is given by
a deeper formula, the Hirzebruch Signature Theorem in dimension 4,

pi(TX) =3t(X) = 3(b* —b"). ' (1.1.6)

So in sum.we see that all the characteristic class data for a simply connected
four-manifold is determined by the intersection form on H s

In any dimension n > 1 the special orthogonal group SO(n) has a con-
nected double cover Spin(n). If ¥ is a smooth oriented n-manifold with a
Riemannian metric, the tangent bundle 7V has structure group SO(n). The
Stiefel-Whitney class w, represents the obstruction to lifting the structure
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group of TV to Spin(n). Such a lift is called a *spin structure’ on V. If w, =0 a
spin structure exists and, if also H'(X; Z/2) = 0, it is unique. In particular a
simply connected four-manifold has a spin structure if and only if its
intersection form is even, and this spin structure is unique.

A special feature, which permeates four-dimensional geometry, is the fact
that Spin(4) splits into a product of two groups: Spin(4) = SU(2) x SU(2).
One way to understand this runs as follows. Distinguish two copies of SU(2)
by SU(2)*, SU(2)" and let S*, S~ be their fundamental two-dimensional
complex representation spaces. Then S* ¢S~ has a natural Hermitian
metric and also a complex symmetric form (the tensor product of the skew
forms on S *, S 7). Together these define a real subspace (S* ® S~ )g, the space
on which the symmetric form is equal to the metric. The symmetry group
SU(2)* x SU(2)” acts on S* ® S, preserving the real subspace, and this
defines a map from SU(2)* x SU(2)” to SO(4) which one can verify to be a
double cover. In the same way a spin structure on a four-manifold can be
viewed as a pair of complex vector bundles S*, S~ —the spin bundles—each
with structure group SU(2), and an isomorphism S* ® §~ = TX ® C, com-
patible with the real structures. (We will come back to spin structures in
Chapter 3.

1.1.5 Self-duality and special isomorphisms

The splitting of Spin(4) is related to the decomposition of the 2-forms on a
four-manifold which will occupy a central position throughout this book. On
an oriented Riemannian manifold X the x operator interchanges forms of
complementary degrees. It is defined by comparing the natural metric on the
forms with the wedge product:

a A xf = (af)dp (1.1.7)
where dy is the Riemannian volume element. So, on a four-manifold, the *
operator takes 2-forms to 2-forms and we have #x = 1,.. The self-dual

and anti-self-dual forms, denoted Qf, Qy respectively, are defined to be the
+ 1 eigenspaces of *, they are sections of rank-3 bundles AGA 7

A=A*@®A", aAa=+|af*dy, foraeA*. (1.1.8)

Reverting to the point of view of representations, the splitting of A? corres-
ponds to a homomorphism S0(4) - SO(3)" x SO(3)”. But SU(2) can be
identified with Spin(3) and the whole picture can be expressed by

Spin(4) = SU(2)* x SU(2)~ = Spin(3)* x Spin(3)”

SO(4)

. SO(3)* x SO(3). (1.1.9)

Over a four-manifold the x-operator on two-forms, and hence the self-dual
and anti-self-dual subspaces, depend only on the conformal class of the
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Riemannian metric. It is possible to turn this around., and regard a conformal
structure as being defined by these subspaces. This is a point of view we will
adopt at a number of points in this book. Consider first the intrinsic structure
on the six-dimensional space A?(U) associated with an oriented four-
dimensional vector space U. The wedge product gives a natural indefinite
quadratic form g on U, with values in the line A*. A choice of volume element
makes this into a real-valued form. Plainly this form has signature 0; a
choice of conformal structure on U singles out maximal positive and
negative subspaces A*, A~ for g. Note in passing that the null cone of the
form ¢ on A? has a simple geometric meaning—the rays in the null cone
are naturally identified with the oriented two-planes in U. On the other
hand, given a metric, this set of rays can be identified with the set of pairs
(", w )eA* x A such that |o*|= [~ =1 So we see that the
Grassmannian of oriented two-planes in a Euclidean four-space can be
identified with S? x $2.

Now, in the presence of the intrinsic form ¢ one of the subspaces, say A~
determines the other; it is the annihilator with respect to g. The algebraic fact
we wish to point out is that for any three-dimensional negative subspace
A~ < A? there is a unique conformal structure on U for which this is the anti-
self-dual subspace. (Note that the discussion depends on the volume element
in A* only through the orientation: switching orientation just switches A"
and A™.) This is a simple algebraic exercise: it is equivalent to the asser-
tion that the representation on A? exhibits SL(U) = SL(4, R) as a double
cover of the identity component of SO(AZ g) = SO(3, 3). This is another
of the special isomorphisms between matrix groups. (The double cover
S0(4) = SO(3) x SO(3) considered before can be derived from this by taking
maximal compact subgroups.)

For purposes of calculation we can exploit this representation of conformal
structures as follows. Fix a reference metric on U and let A/, Ao be the
corresponding subspaces. Any other negative subspace A~ can be rep-
resented as the graph of a unique linear map,

m:Ag — Ag, (1.1.10)

such that [m(w)| < |w| for all non-zero w in A; (see Fig. 1). Thus there is a
bijection between conformal structures on U and maps m from Ay to AJ of
operator norm less than 1. We can identify the new subspace A~ with Ag
using ‘vertical’ projection, and similarly for A*. Then if « is a form in A2, with
components (¢ ", o~ ) in the old decomposition, the sclf-dual part with respect
to the new structure is represented by:

(1 4+ mm*)™ " (2 + mo™). (1.1.11)

This discussion goes over immediately to an oriented four-manifold X; given
a fixed reference metric, we can identify the conformal classes with bundle
maps m: A~ — A" with operator norm everywhere less than 1.



1.1 CLASSICAL INVARIANTS )

1.1.6 Self-duality and Hodge theory

On any compact Riemannian manifold the Hodge Theory gives preferred
representatives for cohomology classes by harmonic differential forms. Recall
that one introduces the formal adjoint operator,

.

d*: Qe i—— QP (1.1.12)
associated with the intrinsic exterior derivative by the metric, so that

{(do, B) = f(ad*B); (1.1.13)

in the oriented case d* = + xd* The Hodge theorem asserts that a real
cohomology class has a unique representative o with:

do = d*a = 0. (1.1.14)

For a compact, oriented four-manifold there is an interaction between the
splitting of A% and the Hodge theory, which will be central to much of the
material in this book. First, the harmonic two-forms are preserved by the *
operator {which interchanges kerd and ker d*), so given a metric we get a
decomposition, )

H}X;R)y=H#"DAH", (1.1.15)

into the self-dual and anti-self-dual (ASD) harmonic 2-forms. It follows
immediately from the definition that these are maximal positive and negative



