Methods in ENZYMOLOGY

Volume 535

Endosome Signaling Part B

Edited by

P. Michael Conn

VOLUME FIVE HUNDRED AND THIRTY FIVE

METHODS IN ENZYMOLOGY

Endosome Signaling Part B

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 32 Jamestown Road, London NW1 7BY, UK

First edition 2014

Copyright © 2014 Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

For information on all Academic Press publications visit our website at store.elsevier.com

ISBN: 978-0-12-397925-4

ISSN: 0076-6879

Printed and bound in United States of America

14 15 16 17 11 10 9 8 7 6 5 4 3 2 1

METHODS IN ENZYMOLOGY

Endosome Signaling Part B

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON and MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

ANNA MARIE PYLE

Departments of Molecular, Cellular and Developmental Biology and Department of Chemistry Investigator, Howard Hughes Medical Institute Yale University

GREGORY L. VERDINE

Department of Chemistry and Chemical Biology Harvard University

Founding Editors

SIDNEY P. COLOWICK and NATHAN O. KAPLAN

CONTRIBUTORS

Veronica Aran

Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom

François Authier

Service information scientifique et technique (IST) de l'Inserm, Délégation régionale Inserm Paris V, Paris, France

Masahiro Azuma

Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan

Tadashi Baba

Department of Microbiology and Infection Control Science, Juntendo University Graduate School of Medicine, Tokyo, Japan

Rachel Barrow

Centre for Tumour Biology, Barts Cancer Institute – A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London, United Kingdom

John J.M. Bergeron

Department of Medicine, and Department of Cell Biology, McGill University, Montreal, Quebec, Canada

Rose Cairns

Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia

Eric C. Chang

Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA

Xue Chen

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Department of Dermatology, Peking University People's Hospital, Beijing, China

Helen R. Clark

Virginia Bioinformatics Institute, and Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA

Bernard Desbuquois

Inserm U567, Institut Cochin, CNRS UMR 8104, Université Paris-Descartes, Paris, France

Gianni M. Di Guglielmo

Department of Physiology and Pharmacology, Western University, London, Ontario, Canada

Nikolai Engedal

Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway

Carlos Enrich

Departament de Biologia Cellular, Immunologia i Neurociències, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

Marco Falasca

Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom

Gareth W. Fearnley

Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom

Theodore Fotsis

Laboratory of Biological Chemistry, Medical School, University of Ioannina, and Department of Biomedical Research, Foundation for Research & Technology – Hellas, Institute of Molecular Biology & Biotechnology, University Campus of Ioannina, Ioannina, Greece

Jürgen Fritsch

Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany

Kenji Funami

Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan

Mariona Gelabert-Baldrich

Departament de Biologia Cellular, Immunologia i Neurociències, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

Thomas Grewal

Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia

Neil Grimsey

Department of Pharmacology, School of Medicine, University of California, La Jolla, California, USA

Mutsuko Hara

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

Michael A. Harrison

School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom

Tristan A. Hayes

Virginia Bioinformatics Institute, and Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA

Carina Hellberg

University of Birmingham, School of Biosciences, Birmingham, United Kingdom

Maria Hernandez-Valladares

Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom

Keiichi Hiramatsu

Department of Microbiology and Infection Control Science, Juntendo University Graduate School of Medicine, Tokyo, Japan

Monira Hoque

Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia

Lukas A. Huber

Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria

Shigaku Ikeda

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Roshanak Irannejad

Department of Psychiatry and, Department of Cellular & Molecular Pharmacology, University of California School of Medicine, San Francisco, California, USA

Kamil Jastrzębski

Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland

Carine Joffre

Centre for Tumour Biology, Barts Cancer Institute – A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London, United Kingdom, and UNITE 830 INSERM, Institut Curie Centre de Recherche, Paris Cedex 05, France

Shiv D. Kale

Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA

Seiji Kamijo

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

Junko Kawasaki

Atopy (Allergy) Research Center, and Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Stéphanie Kermorgant

Centre for Tumour Biology, Barts Cancer Institute – A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London, United Kingdom

Hirokazu Kinoshita

Atopy (Allergy) Research Center, and Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Eleftherios Kostaras

Laboratory of Biological Chemistry, Medical School, University of Ioannina, and Department of Biomedical Research, Foundation for Research & Technology – Hellas, Institute of Molecular Biology & Biotechnology, University Campus of Ioannina, Ioannina, Greece

Sarah J. Kotowski

Department of Psychiatry and, Department of Cellular & Molecular Pharmacology, University of California School of Medicine, San Francisco, California, USA

Antony M. Latham

Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom

Tuan Anh Le

Atopy (Allergy) Research Center; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Department of Dermatology and Allergology, Institute of Clinical Medical and Pharmaceutical Sciences 108, Hanoi, Vietnam

Huilan Lin

Department of Pharmacology, School of Medicine, University of California, La Jolla, California, USA

Tania Maffucci

Inositide Signalling Group, Centre for Diabetes, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom

Bénédicte Manoury

INSERM, Unité 1013, and Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France

Misako Matsumoto

Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan

Sarah McLean

Department of Anatomy and Cell Biology, Department of Physiology and Pharmacology, Western University, London, Ontario, Canada

Marta Miaczynska

Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland

Ian G. Mills

Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo; Department of Cancer Prevention, Institute of Cancer Research; Department of Urology, Oslo University Hospital, Oslo, Norway, and Uro-Oncology Research Group, Cambridge Research Institute, University of Cambridge, Cambridge, United Kingdom

Ludovic Ménard

Centre for Tumour Biology, Barts Cancer Institute – A Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, London, United Kingdom

Jessica G. Moreland

Division of Critical Care, Department of Pediatrics and the Inflammation Program, The University of Iowa, Iowa City, Iowa, USA

Shunsuke Mori

Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Carol Murphy

Department of Biomedical Research, Foundation for Research & Technology – Hellas, Institute of Molecular Biology & Biotechnology, University Campus of Ioannina, Ioannina, Greece

Shigeyuki Nada

Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Adam F. Odell

Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom

Hideoki Ogawa

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan

Masato Okada

Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Ko Okumura

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

A. Paige Davis Volk

Division of Critical Care, Department of Pediatrics and the Inflammation Program, The University of Iowa, Iowa City, Iowa, USA

Nina Marie Pedersen

Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway

Albert Pol

Departament de Biologia Cellular, Immunologia i Neurociències, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, and ICREA, Institució Catalana de Recerca Avançada, Barcelona, Spain

Sreenivasan Ponnambalam

Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom

xviii Contributors

Barry I. Posner

Department of Medicine, and Department of Cell Biology, McGill University, Montreal, Quebec, Canada

Ian A. Prior

Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom

Elżbieta Purta

Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland

Carles Rentero

Departament de Biologia Cellular, Immunologia i Neurociències, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

Łukasz Sadowski

Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland

Julia M. Scheffler

Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria

Natalia Schiefermeier

Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria

Stefan Schütze

Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany

Tsukasa Seya

Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan

Sudha K. Shenoy

Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA

Gina A. Smith

Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom

Harald Stenmark

Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway

Yusuke Takahashi

Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan

Toshiro Takai

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

Megumi Tatematsu

Department of Microbiology and Immunology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan

此为试读,需要完整PDF请访问: www.ertongbook.com

Vladimir Tchikov

Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany

Francesc Tebar

Departament de Biologia Cellular, Immunologia i Neurociències, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

Mira Tohmé

INSERM, Unité 1013; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, and INSERM, Unité 932, Institut Curie, Paris, France

Darren C. Tomlinson

Biomedical Health Research Centre & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom

JoAnn Trejo

Department of Pharmacology, School of Medicine, University of California, La Jolla, California, USA

Hiroko Ushio

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan

Mark von Zastrow

Department of Psychiatry and, Department of Cellular & Molecular Pharmacology, University of California School of Medicine, San Francisco, California, USA

Anh Tuan Vu

Atopy (Allergy) Research Center; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Quyhoa National Leprosy-Dermatology Hospital, Quynhon, Vietnam

Stephen B. Wheatcroft

Division of Diabetes and Cardiovascular Research, Faculty of Medicine & Health, University of Leeds, Leeds, United Kingdom

Yang Xie

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan, and Department of Dermatology, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

Ahmed Zahraoui

Phagocytosis and Bacterial Invasion Laboratory, INSERM U.1016-CNRS UMR 8104, Institut Cochin, Université Paris Descartes, Paris, France

Ze-Yi Zheng

Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA

PREFACE

Endosomes are membrane-bound compartments that transport internalized material from the plasma membrane to the lysosome and elsewhere. These compartments, often about 500 nm, but ranging in size, have the capability to sort molecules, routing some contents to the lysosomes for degradation, and recycling other materials back to the plasma membrane. The Golgi apparatus also provides molecules to the endosome, some of which are delivered to lysosomes and others are recycled back to the Golgi. Because of this ability to differentially deliver molecules, the endosome is viewed as a presorting structure.

Endosomes are categorized by size, enzymatic content, morphology, and by other criteria such as the length of time it takes internalized material to reach them. Endosomes may provide platforms for cross talk between signaling systems, and this consideration has provided them elite status among cellular components that contribute to signaling.

This volume provides descriptions of the range of methods used to analyze and evaluate these important compartments. The authors explain how these methods are able to provide important biological insights in the context of particular models.

Authors were selected based on both their research contributions and on their ability to describe their methodological contributions in a clear and reproducible way. They have been encouraged to make use of graphics, comparisons to other methods, and to provide tricks and approaches not revealed in prior publications that make it possible to adapt their methods to other systems.

The editor wants to express appreciation to the contributors for providing their contributions in a timely fashion, to the senior editors for guidance, and to the staff at Academic Press for helpful input.

P. MICHAEL CONN Lubbock, TX, USA

CONTENTS

Contributors Preface	xii xx
Section I SIGNALING	
1. Assessment of Insulin Proteolysis in Rat Liver Endosomes: Its Relationship to Intracellular Insulin Signaling	3
François Authier and Bernard Desbuquois	
1. Introduction	4
2. Assays for Insulin Degradation	5
3. Assay for Endosomal Proteolysis of Insulin	7
4. Sites of Cleavage and Degradation Products of Insulin within Endosomes	12
5. Endosomal Insulinases 6. Effects of Insulin and Clouds Processed Insulin Analysis on Insulin Clouds	14
6. Effects of Insulin and Slowly Processed Insulin Analogs on Insulin Signaling in Liver Endosomes	1.5
7. Involvement of IR Endocytosis in Positive Regulation of Insulin	1.3
Signaling	20
References	21
2. A Bimolecular Fluorescent Complementation Screen Reveals	
Complex Roles of Endosomes in Ras-Mediated Signaling	25
Ze-Yi Zheng and Eric C. Chang	
1. Introduction	20
Detect Ras–effector Interactions by BiFC	26 30
3. Screen for Ras-binding Proteins by BiFC	33
4. Concluding Remarks	36
Acknowledgments	37
References	37
3. TGFβ in Endosomal Signaling	39
Sarah McLean and Gianni M. Di Guglielmo	
1. Introduction	40
2. Endocytosis	40
3. The Role of the Early Endosome in TGF β Signal Transduction	45

vi Contents

	Readouts of TGFβ Signal Transduction	50
	nowledgments erences	52 52
neie	erences	32
4. An	nexins and Endosomal Signaling	55
Fra	ncesc Tebar, Mariona Gelabert-Baldrich, Monira Hoque, Rose Cairns,	
Car	rles Rentero, Albert Pol, Thomas Grewal, and Carlos Enrich	
1.	Introduction	56
	Isolation of Endocytic Compartments	59
	Targeting Raf-1 Signaling to Early Endosomes	63
4.	Monitoring Endosomal Signaling by Fluorescence Resonance	
	Energy Transfer Microscopy	68
5.	Targeting Annexins to Endosomes and Other Cellular Compartments	69
6.	Summary	70
Ac	knowledgments	70
Ref	ferences	71
5 Ar	nalysis, Regulation, and Roles of Endosomal Phosphoinositides	75
	nia Maffucci and Marco Falasca	75
	Introduction	76
2.		76
3.	,,	78
4. 5.	Monitoring PtdIns3P Intracellular Localization Endosomal PtdIns3P	82 85
5. 6.	Phosphatidylinositol 3,5-Bisphosphate	87
	cknowledgments	88
	eferences	88
1150	in the state of th	00
6. M	ild Fixation and Permeabilization Protocol for Preserving	
	ructures of Endosomes, Focal Adhesions, and Actin	
Fi	laments During Immunofluorescence Analysis	93
Ju	lia M. Scheffler, Natalia Schiefermeier, and Lukas A. Huber	
1.	Introduction	94
2.	Molecular Tools	95
3.	Saponin Treatment Enhances the Preservation of Peripheral Endosomes	
	After Fixation	96
4.	Mild Fixation Allows Preserving the mCherry and GFP Localized	
	to Focal Adhesions and Late Endosomes	98
5	Summary	101

	nt		

1	1	İ	

1	Acknowledgment	101
	References	101
E	Characterizing and Measuring Endocytosis of Lipid-Binding Effectors in Mammalian Cells Helen R. Clark, Tristan A. Hayes, and Shiv D. Kale	103
2 3 4 5 6 7 8 9	 Introduction Culturing and Maintenance of Mammalian Cell Lines Transfection of Mammalian Cells Protein Purification and Preparation Treatment of Cells Tracking Endocytosis by Confocal Microscopy Quantification of Cell Entry by Fluorescent Microtiter Plate Reader Quantification of Cell Entry by Flow Cytometry Summary Acknowledgments References 	104 105 106 108 110 113 115 117 118
i	Measuring the Role for Met Endosomal Signaling in Tumorigenesis Rachel Barrow, Carine Joffre, Ludovic Ménard, and Stéphanie Kermorgant	121
2 3 4 5	 Introduction Analyzing Met Trafficking with Fluorescence and Confocal Microscopy Analyzing Met Internalization Using Flow Cytometry Analyzing Met Internalization, Recycling, and Degradation with Surface Met Biotinylation Analyzing Met Endosomal Signaling In Vitro and In Vivo Summary References 	122 123 127 130 134 138 139
(ntracellular Toll-Like Receptor Recruitment and Cleavage in Endosomal/Lysosomal Organelles Mira Tohmé and Bénédicte Manoury	141
3	 Introduction Purification of Endosomes and Lysosomes Proteases Assays Intracellular TLR Processing References 	142 142 145 145 146

Contents

10. Assessment of the Toll-Like Receptor 3 Pathway in Endosomal Signaling	149
Misako Matsumoto, Kenji Funami, Megumi Tatematsu, Masahiro Azuma,	
and Tsukasa Seya	
	150
 Introduction Analyses of TLR3 Expression and Localization 	151
Assay for TLR3-Mediated Signaling	154
Assay for DC-Mediated NK Activation	158
Assay for DC-Mediated CTL Activation	160
6. Summary	162
Acknowledgments	162
References	162
11. Labeling of Platelet-Derived Growth Factor by Reversible	
Biotinylation to Visualize Its Endocytosis by Microscopy	167
Łukasz Sadowski, Kamil Jastrzębski, Elżbieta Purta, Carina Hellberg,	
and Marta Miaczynska	
1. Introduction	168
2. PDGF Labeling with Sulfo-N-Hydroxysuccinimide-SS-Biotin	169
3. Determination of the Extent of PDGF Biotinylation with Mass Spectrom	
4. Determination of a Biological Activity of bt-PDGF	172
5. Stimulation of Cells with bt-PDGF and Removal of Extracellular Biotins	173
6. Validation and Detection of bt-PDGF in Microscopical Assays	174
7. Conclusion	175
Acknowledgments	176
References	176
12. Endosomal Signaling and Oncogenesis	179
Nikolai Engedal and Ian G. Mills	
1. Introduction	180
2. Receptors	181
3. Adaptor Proteins and Oncogenesis	188
References	195
13. ROS-Containing Endosomal Compartments: Implications	
for Signaling	201
A. Paige Davis Volk and Jessica G. Moreland	
1. Introduction	202
2. Overview of Endocytosis	203