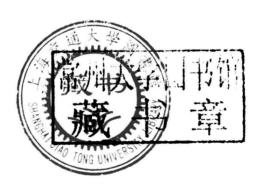
Scholars' Press


Wissam H. Khalil

Heat Transfer and Fluid Flow with Entropy Generation in a Porous Duct

Wissam H. Khalil

TK124-533 K45H 2014

Heat Transfer and Fluid Flow with Entropy Generation in a Porous Duct

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von iedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this works is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher: Scholar's Press ist ein Imprint der / is a trademark of OmniScriptum GmbH & Co. KG Heinrich-Böcking-Str. 6-8, 66121 Saarbrücken, Deutschland / Germany Email: info@scholars-press.com

Herstellung: siehe letzte Seite / Printed at: see last page ISBN: 978-3-639-70020-6

Zugl. / Approved by: Baghdad, University of Technology, 2010

Copyright © 2014 OmniScriptum GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2014

Wissam H. Khalil

Heat Transfer and Fluid Flow with Entropy Generation in a Porous Duct

Republic of Iraq
Ministry of Higher Education
University of Technology
Department of Mechanical
Engineering

Numerical and Experimental Study of Heat Transfer and Fluid Flow with Entropy Generation in a Square Porous Duct

A Thesis

Submitted to Department of Mechanical Engineering/ University of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In

Mechanical Engineering Baghdad - Iraq

By

Wissam Hashim Khalil ((M.Sc.1999, B.Sc.1993))

Supervisors

Assist. Prof. Dr. Wahid S. Mohammad

Prof. Dr. Abdulhassan A. Karamallah

بسم الله الرحمن الرحيم

قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا اللهِ عَلْمَ لَنَا اللهِ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْآكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ.

صدق الله العظيم سورة البقرة (32)

Acknowledgments

The first and deepest gratitude goes to Allah for His uncountable blessings.

I would like to express my deepest gratitude and sincere thanks to my supervisors Dr. Waheed Sh. Mahammed and Dr. Abdul Hassan A. Karammallah. Who proposed the scope of study and supervised with great interest the progress of the research till its final stages.

Special thanks are due to the Head and staff of Mechanical Engineering Department for all the assistance they gave. I would like to thank all kind, helpful and lovely people who helped me directly and indirectly to complete this work, and I apologize to those for being unable to mention them by name here. Special thanks go to my collegeous for their great assistant and great encouragement.

Finally, I would like to apologize to my family for the long period that consumed in completing this work, and for the pain caused by me.

Wissam

Dedications

First of all, I offer my apologize to every one for sever waiting.

I would like to present my dedication to the soul of my father who waits for a long time and departs without delight.

My dedication presented to my parents, my dearest mother (may Allah protect her), my brothers, my sisters, my sons (Ghassan, Ahmed, Sarah) with my love Before of all and after of all I wish to present my dedication to my wife with my hope that this will improve her health.

Wissam

Supervisors certification

We certify that the preparation of this thesis entitled

"Numerical and Experimental Study of Heat Transfer and

Fluid Flow with Entropy Generation in a Square Porous

Duct" is made under our supervision in the Mechanical

Engineering Department of the University of Technology, in

partial fulfillment of the requirements for the degree of Doctor of

Philosophy in Mechanical Engineering.

Signature: Wahid S. Mohammad

Name: Dr. Wahid S. Mohammad

(Assistant Prof.)

Date: 2010

Signature: Abdul Hassan A.

Karammallah

Name: Dr. Abdul Hassan A.

Karammallah (Full Prof.)

Date: 2010

5

Certification

I certify that this thesis entitled "Numerical and Experimental Study of Heat Transfer and Fluid Flow with Entropy Generation In a Square Porous Duct" is prepared under my linguistic supervision. Its language was amended to meet the style of the English language.

Signature: Samir Ali AL-Rabii

Name: Dr. Samir Ali AL-Rabii

Title: Lecturer

Date: 2010

Table of Contents

	Description	Page
1	Chapter One: Introduction	
1.1	Preface	18
1.2	Porosity	19
1.3	Flow Models	19
1.4	Second Law of Thermodynamics	22
1.5	Exergy Concept	24
1.6	Optimization Using Entropy Generation Minimization	25
1.7	Pressure Drop and Coefficient of Friction Through a Channel Packed Bed	26
1.8	Aim of the Present Work	27
2	Chapter Two: Literature Survey	
2.1	Preface	29
2.2	Forced convection in Internal Flow	29
2.3	Forced Convection through Channels filled with Porous Media	31
2.4	Entropy Generation Literature	45
2.5	Entropy Generation Through Porous Media	52
2.6	Summary of Literature Review	55
3	Chapter Three: Mathematical Model	
3.1	Introduction	58
3.2	Geometry and Coordinate System	58
3.3	Assumptions	58
3.4	The Governing Equations	59
3.5	Entropy Generation Equation	60

3.0	Non-dimensionalization of Governing Equations	01
3.7	Calculation of Mean Velocity	63
3.8	Calculation of Bulk Temperature	64
3.9	Calculation of Local and Mean Heat Transfer Coefficient	64
3.10	Calculation the Local and Mean Nusselt Number	65
3.11	Boundary Conditions	66
3.11.1	Boundary Conditions at Entrance	67
3.11.2	Boundary Conditions at Exit	67
3.12.3	Boundary Conditions at Wall Surfaces	67
4	Chapter Four: Computational Implementation	
4.1	Introduction	70
4.2	Staggered Grid	70
4.3	The General Transport Equation	71
4.4	Finite Volume Method	71
4.5	Discretization of the General Form of Equations	72
4.6	Hybird Difference Scheme	78
4.7	Solution of Discretized Equations	79
4.8	Discretization Equations	80
4.9	Pressure- Correction Equation	82
4.10	Iterative Solution	83
4.11	Solution Procedure	84
4.12	Computer Program	86
5	Chapter Five: Experimental Work	
5.1	Introduction	92
5.2	Experimental Objectives	92

5.3	General Description	92
5.4	Test Rig	93
5.4.1	Test Channel	93
5.4.2	Packed Bed	94
5.4.3	Teflon Pieces	94
5.4.4	The Thermocouples	94
5.4.4.1	The Thermocouples Fixation	95
5.4.5	Static Pressure Tabs	96
5.4.6	Electrical Heater	96
5.4.7	Water Circuit	97
5.4.8	Packing of Test Section	98
5.5	Instrumentation	99
5.5.1	Electric Heating Circuit	100
5.5.2	Temperature Measurement	100
5.5.3	Pressure Measurement	101
5.5.4	Flow Rate Measurement	102
5.6	Packed Bed Measurements	102
5.7	Experimental Procedure and Measurements	104
5.7.1	Experimental Procedure	104
5.7.2	The Measurements Procedure	105
5.8	Experimental Data Analysis and Calculations	106
6	Chapter Six : Results and Discussion	
6.1	Introduction	121
6.2	Experimental Results	121
6.2.1	Temperature Distribution	121

6.2.2	Local Nusselt number	122
6.2.3	Pressure Drop	124
6.2.4	Friction Factor	124
6.2.5	Comparison with previous work	125
6.2.6	Correlations of Experimental work	126
6.2.6.1	Correlations of Heat Transfer results	126
6.2.6.2	Correlations of Pressure Drop Results	127
6.2.6.3	Correlations of Friction Factor Result	128
6.3	Numerical Results	129
6.3.1	Validity Of Numerical Code	129
6.3.2	Velocity Distribution	130
6.3.2.1	Effect of (Da, Re, Ec) Numbers on Velocity Distribution	131
6.3.3	Temperature Distribution Through the Channel	132
6.3.3.1	Effect of (Da, Re, Ec) Numbers on Temperature Distribution	132
6.3.4	Entropy Generation	134
6.3.4.1	Effect of (Da, Re, Ec) Numbers on Entropy Generation	135
6.3.5	Bejan Number	136
6.3.6	Friction Factor	137
6.3.7	Heat Transfer	138
7	Chapter Seven : Conclusions and Recommendations	
7.1	Introduction	202
7.2	Conclusions	202
7.2.1	Experimental Conclusions Part	202
7.2.2	Numerical Conclusions Part	203

7.3	Recommendations for Future Work	202
	Appendices	205
	References	220

NOMENCLATURE

Symbol	Description	Dimension
A	Cross sectional area of test section	m²
a	Cross sectional area of test section	m²
a_E , a_W , a_N , a_S , a_R , a_L	Coefficient in General Finite-Volume Equation	-
В	Dimensionless pressure gradient	-
C_p	Specific heat at constant pressure	J/kg .K
$\cos\theta$	Power facter	-
D_h	Hydraulic diameter	m
Dp	Particle diameter(porous media)	m
D	Distance	m
F_{v}	Drag factor	-
F	Friction factor	-
g	Gravitational acceleration	m/s²
Н	Height	m
Н	Boundary condition of constant heat flux	-
h	Heat transfer coefficient	W/m².°C
I	Current	Ampere
i,j,k	Indices which indicate positions in the (x, y, z) direction	-
K	Porous media Permeability	m²
k	Thermal conductivity	W/m.°C
L	Channel Length	m
m	Mass flow rate	kg/s

Symbol	Description	Dimension
P	Pressure	N/m²
Q	Total input power	W
q	Power absorber water	W/m²
S	Entropy	W/m.°C
S _{gen.}	Entropy generation per unit volume	W/m³.°C
S	Spacing	m
T	Temperature	°C
T	Boundary condition of constant wall Temperature	-
t	Time	S
U,V,W	Non-dimensional velocity components	-
u,v,w	Velocity componenets	m/s
V	Electrical voltage	Volt
W	Rate of work done	W
W	Duct width	m
X_{th}	Thermal dimensionless entrance length	m
X,Y,Z	Non-dimensional axis	-
x,y,z	Coordinate axis	m

GREEK SYMBOLS

Symbol	Description	Dimension
θ	Dimensionless temperature, $\frac{T - T_w}{T_{in} - T_w}$	-
α	Thermal diffusivity	m/sec ²
γ	Shape parameter of porous media	-
\mathcal{E}	Porosity	-