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‘““We know so much about the structure, variability and location of satellite
DNA, that it is surprising and increasingly significant that we know nothing

about tae origin and function of these special DNA sequences’’ (P M. B. Walker,
1972).

i. Introduction

Although classic genetics considered the eukaryote chromosome simply a
linear sequence of linked gene loci, biochemical work has made it clear that
many eukaryotes carry far more DNA than appears to be required in terms of this
simple model. It is now generally agreed that there is considerably more DNA in
the nucleus than is needed to code for all the proteins made by a plant or an
animal (see Addendum, note 1). While this is usually regarded as a distinctive
feature of eukaryotes, it is worth drawing attention to the fact that bacterial
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2 BERNARD JOHN AND GEORGE L. GABOR MIKLOS

genomes, ‘consisting almost entirely of unique DNA, may vary over a 10-fold
range (Kingsbury, 1969). In eukaryotes, however, the variation applies both to
the unique DNA fraction, not all of which appears to function in a conventional
coding sense, and to the repetitive DNA fraction which characterizes most
eukaryotes (see Addendum, note 2). It is especially true of the simple-sequence °
DNA which is highly répeated within a genome. This DNA is sometimes identi-
fiable as a satellite in buoyant density gradients, but it can be cryptic and require
the presence of metal ions or antibiotics for its visualization and isolation.
Figure 1 illustrates some of the striking differences which obtain between

related species in terms of their satellite components. Three important facts are
immediately obvious: i

1. In some cases (e.g., the antelope squirrel, Ammospermophilus harrisi, and
the mouse, Mus musculus) each species has its éwn distinctive satellite or satel-
lites. ' :
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1.700
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Fic. 1. Buoyant density patterns of DNA preparations centrifuged to equilibrium in neutral
cesium chloride. (a) Ammospermophilus harrisi (after Mascarello and Mazrimas, 1977); (b) Mus
musculus (after Walker, 1968); (c) Dipodomys ordii and D. agilis (after Mazrimas and Hatch, 1972);
and (d) Drosophila virilis and D. americana. (After Gall and Atherton, 1974.)
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2. In other cases the same satellites are present, but they differ in amount
(e.g., the kangaroo rat, Dipodomys). ,

3. Finally there may be changes in both kind and quantity (e.g., Drosophila
virilis versus D. americana).

Despite all attempts to formulate simple rules governing satellite evolution, it
is now clear that each case so far analyzed has brought with it its own claims for
generalization, none of which have proven sufficiently all-embracing. One initial
hypothesis on satellite evolution was that satellites wax and wane with amazing
rapidity in evolutionary terms, so that closely related species differ drastically in
amount or type of satellite. However, improved methods of DNA sequencing
have led to the suggestion that closely related species appear to modulate their
satellites from a common library (Salser ef al., 1976). New problems have been
revealed following the use of restriction endonucleases. Thus, if one examines
some of the cases presented in Table I, the complexities involved in satellite
DNA function soon become apparent. One of the very few investigators who
appears to appreciate the diversity of satellite DNA structure is Skinner (1977).
From her studies on the crab satellites, she has attempted to realistically evaluate
the implications of structure for function from a molecular viewpoint. She has
stressed that ‘‘a major theme ... is the diversity, almost the individuality of
various satellites.’’

Some satellites have a very simple basic repeat unit, minimally 2 base pairs
(bp) in the crab AT satellite. Even a mammal such as the kangaroo rat can have a
satellite with a simple repeat; in the case of the MS satellite it is AAG. However,
the repeating sequence can be very long. For example, the 1.688 satellite of
Drosophila melanogaster is 365 bp in length. Superimposed on the short repeat
sequences can be a long-range periodicity which is as high as 1408 bp in calf
satellite. If one considers the relationship between satellites within a species,
different patterns again emerge. In D. virilis the three main satellites are clearly
related to each other by single base modifications, and so the basis for changes in
satellite DNA sequence appears to be simple. The same situation does not,
howevér, obtain in kangaroo rats. Here not only are there no apparent simple
rules to derive the different satellites from a common sequence, as there are in D.
virilis, but the satellites are also more heterogeneous. Finally, in D. melanogas-
ter, even though most satellites appear to be related simply to each other, the
1.688 satellite is complex.

In spite of the large amount of information which now exists on the structure of
satellite DNA, it is clear that the central issue, namely, function, has not been
directly tackled. Probably the most important reason for this unsatisfactory state
of affairs has been the signal failure to approach the problem of function experi-
mentally, despite the considerable effort that has gone toward elucidating struc-
tural properties. In part this refractory state of affairs stems from the assumption
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Hind ITT
20
~=AGCTTTCTGAGAAAGTGCCTCTGTGTTCTGTT-
= AAGACTCTIINNGAIC GAGACACAAGARAECA A
EcoRrl
40 , 60
AATTCAEECECACAGAGTTACATCTTTCCCECT Y-
T T A A GIESATERNC T G'T CTCANATCGCTAGARAAGGGAR-=-
80

CAAGAAGCCTTTCGCTAAGGCTGTTCTTGTGG -
GTTCTTCGGAAACEGATTCCUARACAAGAACACC -
EcoR1
: 100 120
AATTGGCAAAGGGATATTTGGAAGCCCATA-
TR ACICGC T'T*T CCCTATAAACCTT CGGGCTATS>

: _ Hph : Mbo II
125 ; ; 140
GAGGGCTATGGTGAAAAAGGAAATATCTTCC -
CTCCCGATACCACTTTTTCCTTTATAGAAGOG G -

HipdI1iI
160 128

GTTCAAAACTGGAAAGA A &

CAAGT T T T GASCICEIETICT, T C G A =

ScHEME 1. The nucleotide sequence of a population of uncloned 172 bp Hind III scgmcnu of the
African Green Monkey (Cercopithecus aethiops). (From Rosenberg ez al., 1978.)

that a knowledge of function necessarily follows from a knowledge of structure.
In part too it is explained by the fact that the properties of satellite DNA have
been evaluated within the framework of prokaryotic dogma without sufficient
consideration of the higher-order phenomena which characterize the biology of
eukaryotes. : :

It appears very obvious that we have now reached a stage in satellite DNA
research where additional structural analyses are not revealing the nature of its
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function—and indeed there is a very good reason. for this. The initial success of
the prokaryotic approach to genetic function was due to its manipulative aspects.
This approach, involving perturbation of a system by mutation, deletion, substitu-
tion and translocation, proved critical: Only recently has a similar approach been
applied specifically in investigating satellite DNA function, although an enor-
mous literature exists on experimental and natural modifications of hetero—
chromatin, which bear directly on this issue.

In the absence of experimental evidence the problem has in general been
discussed in terms largely modified from earlier theoretical considerations relat-
ing to the functions of heterochromatin. A summary of the comparisons of
heterochromatin and satellite DNA functions is presented in Table II. As can be
seen from this table, the assumption has generally been made that there is at least
one positive function. However, since similar organisms have widely different

A TcCC TC

Alul (R Y gl AA TT
AGIcTC/GGAAGIAAAA[TTTCCJAATAAAACGGG[GTTCClJAAAAGGGAAAITAAAA
TC|GAGICCTTC|TTTTAAAGGITTATTTTGCCC|CAAGGTTTTCICCTTTATTTT
G GA A T AGG. . G AAA TT AG AA
Hae C - G A A A A
TTTTTTGGCCACCATTTGGTCAAATTTTGA[TTACClcccceTcleTTeclaAA
AAAAAACC/GGTGGTAAACCAGTTTAAAACTIAATGG|GGGGGAGGAAGG|TTT
G AL o e AT
(R G AA A cT c T
AATTCClAAAATT|[TATCC|AAAATTAAITTTCClAAAAATCCTTAAAAAGAGAA
TITAAGG|ITTTTAAATAGGITTTTAATTAAAGGTTTTTAGGAATTTTTCTCTT
G, -C A T GA G A
T G G c ) Alul
AAAGGGGAAITGCGTTAlGGAA GTAA|TTAG[CT
TT|TC CCTTACGCAAT crrccA T R At
A [
C TP CGENT S G o o R R
___________________ aAactT|cGAaAAlTfcceaalt[rreec|alceTAaAlaAAlcGcAAAlA
TTGAAlCCTTT/AlCCGTT|A|AACGG|TICCATT|TTT|CC TTT|T
> : GAGAGCA G c AAA G
G Tl A AA CA G Hint _AC
TTTCGTT[GGAAAATATCClAATTT[TTTGC|AGlAGTCTGTT|TTTCClcAA[TTTC
AAAGCIAACCTTT|ITATAGG|TTAAAAAACG|TC TCA|GACAAAAAGG|GTTIAAAG
c A A R ¢ TG .
G Aaah o TA A A G5 Aisy CC.Taig
clerccTccAAAlTaATcClrTTTTI[TTTCClc.AAACA[AGAAA|TA
GCAGGAGGTTTIATAGGAAAAAAAAAGGIGTTTGT[TCTTTAT
c TV T T C T GG A G :
SCHEME 2. ’Sequence variations in cloned 1.688 satellite DNA. (From Brutlag, 1977b.)
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TABLE I

A COMPARISON OF THE SUGGESTED FUNCTIONS OF HETEROCHROMATIN AND SATELLITE DNA

Type of function Heterochromatin®

Satellite DNA

To stabilize centromeres or
telomeres

Chromosome organization

Cell metabolism To control the transfer of sub-
stances across membranes
To control cell size, hence rates

of growth and differentiation

Chromosome pairing To bring about or prevent pairing
of homologs’
To regulate crossing-over and

chiasma formation

To affect breakability and/cr
- rejoinability of chromosomes
and so facilitate the evolution
of karyotypes

Speciation and evolution

To protect vital chromosome
organelles such as centromeres
and nucleolus organizers
(Yunis and Yasmineh, 1971)

To alter the properties of the
centromere or to stabilize
chromosome ends (Walker,
1972)

To specify folding patterns of
chromosomes (Walker, 1972)

To protect vital euchromatin by
forming a layer at the outer sur-
face of the nuclear membrane
(Hsu, 1975)

To add to the nucleotype and so
determine rates of cell division
and growth (Bennett, 1971)

To attract nonhomologous
chromosomes and so establish
proximity between chromo-
somes or chromosome regions
that are functionally related
(Yunis and Yasmineh, 1971)

To attract homologous chromo-
somes at meiosis and to provide
ameans of recognition between
such chromosomes in all forms
of pairing (Peacock et al.,
1977)

To determine the occurrence or‘

~ fixation of chromosome re-
arrangements (Hatch et al.,
1976)

To establish a fertility barrier that

- provides for evolution by hin-
dering the pairing of homolo
gous chromosomes in hybrids
between species differing in
satellite sequences (Yunis and
Yasmineh, 1971; Corneo,
1976; Fry and Salser, 1977)

@ Summarized by Cooper (1959).



