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Preface

The importance of transport phenomena (heat, mass and momentum transfer)
in materials processing has been recently re-evaluated. In the majority of
materials processing, transport phenomena play an important role in that
one or more types of transfer will be closely related to the processing of
materials from one state to another. The understanding and analysis of
transport phenomena related to materials processes is crucial to the design
and optimization of the processes involved. Since ‘transport phenomena’ was
first introduced into materials science and engineering curricula in the 1970s,
the teaching of this subject has focused primarily on qualitative understanding
of the physical phenomena involved in materials processes. The role of trans-
port phenomena in materials science and engineering has been presented at a
very scientific level, with little emphasis on practical application. Consequently,
it has been very difficult for researchers and engineers who have this academic
background in transport phenomena to put their knowledge into practice in
real applications in materials processing. Recently, owing to greatly enhanced
computer power, and development of numerical models and computational
modeling software, transport phenomena coupled with computer simulations,
1.e., ‘Computational Transport Phenomena’ can bridge this gap between
‘Science’ and “Practice’.

The aims of this book are to enhance the capability of the reader (1) to
utilize commercially available software, (i1) to develop tailored simulation
software suitable for the processes of interest, and (i11) to apply the concepts
of transport phenomena in materials science and engineering research. The
book is not intended to include a comprehensive review of computational
algorithms related to transport phenomena appearing in materials science
and engineering problems and examples of applications in the field, rather
it includes fundamentals of transport phenomena, basics of the finite-differ-
ence/finite-volume methods. algorithms of fluid flow simulations, and a few
examples of applications.

The book is essentially intended to be self-contained. However, in order
to maximize the benefit of this book the reader needs to have some knowledge
of mathematics, especially integral and differential calculus, elementary
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vector/matrix algebra, and basic numerical methods. This book is intended
for final-year undergraduate or graduate students, and also researchers and
engineers who work in the field of materials processing and manufacturing.

The book consists of 13 chapters. The first part, consisting of chapters
-3, provides basic concepts of transport phenomena, conservation laws
for energy, mass and momentum, and derivation of governing integral and
differential equations. The second part of this book, chapters 4-7, presents
fundamentals of finite-difference/finite-volume methods, applications of
finite volume methods to steady and transient potential flow problems, and
heat transfer problems with phase change. The third part, chapters 8 and
9. deals with discretization schemes for convection and diffusion terms,
and solution algorithms for solving fluid flow problems. The fourth part,
chapters 10 and 11, describes basics of the SIMPLE methods for simulating
Auid flow which include the discretization of governing equations and solu-
tion schemes, based on the Cartesian-coordinate and body-fitted-coordinate
systems. The treatment of free surfaces in fluid flow is also included. The final
part of this book, chapters 12 and 13, is devoted to applications of heat, mass
and momentum transfer in materials processing, such as modelings of mould
filling of molten metals in a die cavity and microstructure evolution in
solidification of metals. The computer programs used in chapters 5-7 and
10—13 are available free online at www.bookmarkphysics.iop.org/.

Finally, the author would like to express his sincere thanks to many
friends and colleagues who contributed to this textbook. First, I would like
to thank Professor B Cantor, Professor T Umeda and Professor C S Choi
for their kind suggestion and encouragement to write this book, and the
team at Institute of Physics Publishing for their patience and support
throughout the writing process. I especially thank my post-doc researchers,
Dr SY Lee, DrJ H Mok and Dr M F Zhu for their contributions to this
book. I continue to be indebted to my students, W J Cho and H N Nam
for their efforts in preparing the figures.

I would like to acknowledge my colleagues at Yonsei University,
Professor C S Yoon, Professor T S Paik, Professor I W Paik, Professor J H
Kim, and Professor C S Shin, for their continuous encouragement. I am
also grateful to Dr M Itamura of Nano-Cast Corp. for his kind comments.
Finally, I would like to thank my wife and two sons, Jung-Woo and Jin-
Hyuk, for their patience and continued encouragement during the compilation
of this book.

C P Hong
Yonseil University

‘Your beginnings are humble, so prosperous will your future be’ (Job 8:7)
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Chapter 1

Mechanisms of transport phenomena

Transport phenomena in engineering fields involve three types of transfer: (1)
energy or heat transport, (2) mass transport and (3) momentum transport or
fluid dynamics. In this chapter, physical mechanisms of three types of trans-
port phenomena will be briefly described.

1.1 Heat transfer

The irreversible phenomenon known as heat transfer occurs when there exists
a temperature difference in a medium or between media. In order to under-
stand the mechanisms of heat transfer, let us consider the cooling process of a
heated carbon steel plate in a furnace, as shown in figure 1.1. Heat is
transported from the steel plate to its surroundings by the three modes of
heat transfer, which are generally recognized as conduction, convection and
radiation.

1.1.1 Conduction—Fourier’s Law of Conduction

The term conduction i1s used to refer to the transport of heat from high tem-
perature to low temperature in a stationary medium, which may be a solid or
a fluid, by the motion of molecules or electrons. In engineering applications,
1t 1s important to quantify heat transfer processes in terms of appropriate rate
equations.

Consider the one-dimensional wall shown in figure 1.2, having a
temperature distribution of 7'(x). The temperature at x = 0 is higher than
that at x = L, so heat is conducted from left to right, according to the rate
equation known as Fourier's law of conduction expressed by

dT
. 1.1.1
dx ( )

The heat flux g,, which is the heat transfer rate in the x direction per unit
area, is proportional to the temperature gradient, d7'/dx. The cgs and mks

g, = —A
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Figure 1.1. (a) Heat transfer mechanisms: conduction, convection and radiation, and (b)
variation of temperature profiles with time.

2

units of the heat flux are W-cm - and W-m ~, respectively. Here the
proportional constant X is the thermal conductivity (W -cm 'K ' and
W -m ' - K ' in the cgs and mks units, respectively) and is a characteristic
of the wall material. The negative sign in equation (l.1.1) indicates that
heat 1s transferred in the direction of decreasing temperature.

1.1.2 Convection

Energy can be transported not only due to thermal gradient, but also due to
bulk fluid flow. In order to estimate the heat transfer related to bulk fluid
flow, let us consider a simple example, consisting of a fluid at a bulk tempera-
ture of 7. flowing with a bulk flow velocity of u.. through a circular channel

Figure 1.2. One-dimensional heat conduction through a plane wall.
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Figure 1.3. Bulk flow of fluids through a circular tube showing two components in heat,
mass and momentum transport: conductive (diffusive or viscous) and convective flux
terms.

boundary layer

whose inside surface i1s at temperature 7. as shown in figure 1.3. If there is a
temperature gradient in the fluid in the direction of bulk flow and 7 1s
different from 7, two kinds of heat transfer can be considered in this
system: one is the heat transfer in the direction of flow caused by the bulk
fluid motion, and the other is the heat transfer which occurs between a
fluid in motion and a bounding surface because of the temperature difference.

1.1.2.1 Energy flux by bulk flow

Consider first the heat transfer term in the direction of flow caused by the bulk
fluid motion. This term consists of two components: the conductive (or diffu-
sive) and convective components. The conductive heat flux per unit area across
the plane at x 1s given by ¢, = —A(d7/dx), while the convective heat flux
(or bulk heat flux) caused by bulk flow per unit area is given by (pC,T)u.._,
which 1s defined as the heat transferred across the plane at x resulting from
the motion of the fluid itself. Here p 1s the density of the fluid and C,, 1s the

specific heat capacity. Thus, the total heat flux ¢, 1is given by

qx, .. = Aif - (pCL T u. . (1.1.2)

Convection heat transfer can be classified according to the nature of the
flow. If a fluid motion 1s induced externally by a pump or a fan, the heat
transfer is said to be forced convection. 1f the fluid motion is set up by the
buoyancy effect resulting from the density difference caused by the difference
of temperature or solute concentration in the fluid. the heat transfer is said to

be free (or natural) convection.

[.1.2.2 Thermal boundary laver

Let us now consider heat transfer. which occurs between a fluid in motion
and a bounding surface because of the temperature difference. This
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momentum boundary layer,d,, thermal boundary layer, 3,

() nlrnaas transftq boundary layer, §_

p.ﬂi,:

Figure 1.4. Development of momentum, thermal and mass transfer boundary layers in
fluid flow over a solid surface.

mechanism of heat transfer, which is frequently encountered in materials
processing, 1s also-called convection, since the motion of fluid plays an impor-
tant role in determining the rate of heat transfer. As illustrated in figure 1.4,
because of the interaction between a fluid and a solid surface and the effect of
viscosity, there will be a region of fluid through which the fluid velocity varies
from zero at the solid surface to u. in the bulk flow. The velocity-affected
region of flow 1s known as the momentum (or velocity) boundary layer 6,,.
which 1s defined as the region where flow velocities are 99% or less of the
bulk flow velocity Uy, 1.8, (U (V) — ug) /(s — ug) < 0.99. When wu, is equal
to zero, u.(v)/u, < 0.99. Similarly, there will be a region of the fluid
through Wthh the temperature of the fluid varies from 7, at the solid
surface to 7 in the free stream. The thermal boundary layer 6t can also be
defined as the distance from the solid surface at which the dimensionless
temperature (7 (y) — 7,)/(Ty — T,) reaches 0.99. As the flow rate
increases, both the thicknesses of the velocity and thermal boundary layers
decrease, resulting in the increase in both the velocity and temperature
gradients.

The convection heat transfer between the fluid and the solid surface
consists of two components: one is the contribution due to random molecular
motion (diffusion or conduction) which dominates near the solid surface
where the fluid velocity 1s zero. and the other is the contribution due to
the bulk fluild motion within the boundary layer. It 1s, therefore, essential
to understand boundary layer phenomena in treating convection heat
transfer.

In engineering applications, in order to calculate the convective heat
transfer between a fluid and a solid surface, the appropriate rate equation
is considered as follow.

q.rmm- - h( T'i: o Th) ( ] . l 3)

where ¢, is the convective heat flux between the solid surface and the fluid,

conv

which is proportional to the temperature difference between them, and
the proportional constant / 1s referred to as the convection heat transfer



