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PREFACE

Persons familiar with earlier editions of this book will observe a number
of changes and improvements in this new version. Although the previous
approach and organization have been retained, virtually all the exposition
has been rewritten, with more illustrative examples, new exercises, and an
expanded solutions section. Students learn mathematics by practicing it, and
practice can be stimulated by having detailed 'solutions available as guidance.
Students should be encouraged to read all the exercises and to note especially
those that extend the ideas of the text.

A change of notation has been adopted for the new edition in that
linear mappings are treated as lgft—hand operators on vectors, in conformity
with customary function notation.

More significantly, this revision begins concretely to allow students time
to develop understanding before general concepts are introduced. The book
begins with the familiar problem of solving a system of linear equations. This
is used to introduce the concept of a vector and to motivate the ideas of
vector and matrix algebra. Throughout the book Gaussian elimination is
used as a unifying computational technique.

Metric notions of Euclidean space are' introduced at an early stage to
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establish a familiar geometric setting in which the concepts of linear algebra
can be interpreted. Euclidean spaces are reexamined more generally in
Chapter 8.

The book can be used flexibly for a variety of courses in linear algebra.
In view of the differences in pace and emphasis of mathematics instruction
at various institutions, the following time estimates should be regarded only
as rough guidelines, reflecting experience at Kenyon College. The book
contains enough material for a year of linear algebra, with Chapters 1-5
constituting a suitable firs{-semester course. (If time permits, Chapter 10
can be incjuded as a significant application of special interest to students
of business and economics. Alternatively, Chapter 8 can be covered to
deepen the earlier exposure to inner product spaces.) Chapters 6-9 comprise
a suitable second-semester course, with Chapters 10 and 11 as optional
material if time permits..

Chapter 1 (4 hours)
Furst Chapter 2 (10 hours)
ﬁ Quarter Chapter 3 (6 hours
First Chapter 4 (9 hours
Semester- |

; |

Chapter-5 {6 hours)

; Second Chapter*10 (6 hours)
Quarter

¥

Chapter 6 (6 hours)
Chapter 7 (12 hours)

[ !

J Second’ Chapter 8 (5 hours)
Semester I
p Thard
Quarter Chapter 9 (10 hOEl;s)

Chapter 11 (6 hours)




Preface vif

Courses in linear algebra currently are elected by students ranging from
freshmen to seniors and with widely different professional goals. Con-
sequently, such courses must be paced carefully, with time allowed for
review and assimilation of ideas. As an average rule an instructor should
allow at least three class hours for every two sections of text materal, allot-
ting some class time for questions and discussions of exercises

Chapter interdependencies and an illustrative arrangement of courses
are shown in the diagram, but each instructor should adjust this schedule
to the needs of the class.

I am indebted to many persons—in particular, the Kenyon students
who pointed out errors in an earlier draft of this material, to Wendell
Lindstrom who offered thoughtful suggestions for improvement, and to
Hope Weir who typed the manuscript with rare expertise. The errors and
flaws that remain are my responsibility, and I shall welcome the help of
readers in finding them and in sending me their comments and criticisms
Special gratitude is expressed to Charles Rice, Richard Hoppe, Gerald
Chaplin, George Fowler, Steve Alex, Danny Vaughn, James Carhart, and the
late Thomas L. Bogardus, Jr., whose contributions to this work were indirect
but most essential.

May 1978 DANIEL T. FINKBEINER 11
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CHAPTER1
LINEAR

EQUATIONS

Linear algebra is concerned primarily with mathematical systems of a parti-
cular type (called vector'spaces), functions of a particular type (called linear
mappings), and the algebraic ®presentation of such functions by matrices. If
you have completed a course in calculus, you are already familiar with some
examples of vector spaces, such as the real number system R and the
Euglidean plane. You also have studied functions from R to R, so at least
superficially the study of linear algebra appears to be a natural extension
and generalization of your previous studies. But you should be forewarned
that the degree of generalization is substantial and the methods of linear
algebra are significantly different from those of calculus.

A glance at the Table of Contents will reveal many terms and topics that
might be unfamiliar to you at this stage in your mathematical development.
Therefore, as you study this material you will need to pay close attention to
the definitions and theorems, assimilating each idea as it arises, gradually
building your mathematical vocabulary and your ability to utilize new con-
cepts and techniques. You are urged to make a practice of reading all the
exercises and noting the results they contain, whether or not you solve them
in detail
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The contents of this book are a blend of formal theory and computa-
tional techniques related to that theory. We begin with the problem, familiar
from secondary school algebra, of solving a system of linear equations,
thereby introducing the idea of a vector space informally. Vector spaces are
not defined formally until Section 3 of Chapter 2. At that point, and from
time to time thereafter, you are urged to study Appendix A.1, where alge-
braic systems: are explained briefly but generally. You might-not need that
much generality to understand the concept of a vector space, but firm fami-
liarity with the notion of an algebraic system will greatly accelerate your
ability to feel comfortable with the ideas of linear algebra.

Individuals acquire mathematical sophistication and maturity at differ-
ent rates, and you should not expect to achieve instant success in assimilat-
ing some of the more subtle concepts of this course. With. patience,
persistence, and plenty of practice with specific examples and exercises, you
can anticipate steady progress in developing your capacity for abstract
thought and careful reasoning. Moreover, you will greatly enhance your
insight into the nature of mathematics and your appreciation of its power
and beauty.

1.1 SYSTEMS OF LINEAR EQUATIONS

The central focus of this book is the concept of linearity. Persons who have
studied mathematics through a first course in calculus already are familiar
with examples of linearity in elementary algebra, coordinate geometry, and
calculus, but they probably are not yet aware of the extent to which linear
methods pervade mathematical theory and application. Such awareness will
develop gradually throughout this book as we explore the properties and
significance of linearity in various mathematical settings.

We begin with the familiar example of a line L in the real coordinate
plane, which can be described algebraically by a linear equation in two
variables: .

L:ax +'by=d.

A point (x,, yo) of the plane lies on the line L if and onlv if the real number
axg + by, has the value d. The formal expression

ax + by

is called a linear combination of x and y.



1.1 Systems of Linear Equations 3

By analogy a linear combination of three variables has the form
ax + by + ¢z,
where a, l;, and c are constants. Any equation of the form
ax +by+cz=d

is called a linear equation in three variables. If you have studied the
geometry of three-dimensional space, you will recall that the graph of a
linear equation in three variables is a plane, rather than a line. This is a
significant observation: the word linear refers o the algebraic form of an
equation rather than to the geometric object that is its graph. The two mean-
ings coincide only for the case of two variables—that is, for the coordinate
plane. In general, a linear equation in n variables has the form

CiXy +CaXa +C3X3 + - + Co Xy = d,

where at least one ¢, # 0. Fot n>3 the graph of this equation in n-
dimensional space is called a hyperplane.

Applications of mathematics to science and social science frequently
lead to the need to solve a system of several linear equations in several
variables, the coefficients being real numbers:

11Xy + 833X +°°* + ay,x,'=d,,
21Xy o+ @2X; +° 0"+ A X, = d,,

(1.1)

Oy Xy +an|2x2+”.+an|xu=du'

The number m of equations might be less than, equal to, or greater than the
number n of variables. A solution of the System 1.1 is an ordered n-tuple
(¢4 --., ¢,) of real numbers having the property that the substitution

Xy =¢p
x: = Cz,
Xy = Cy,

simultaneously satisfies each of the m equations of the system. The solution
of (1.1) is the set of all solutions, and to solve the system means to describe
the set of all solutions. As we shall see, this set can be finite or infinite.
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This problem is considered in algebra courses in secondary school for
the case m = 2 = n, and sometimes for other small values of m and n. But a
large scale linear model in contemporary économics might require the solu-
tion of a system of perhaps 83 equations in 115 unknowns. Hence we need to
find very efficient procedures for solving (1.1), regardless of the values of m
and,n, in a finite number of computational steps. Any fixed set of instructions
that is guaranteed to solve a particular type of problem in a finite number of
steps is called an algorithm. Many algorithms exist for solving systems of
linear equations, but one of the oldest methods, introduced by Gauss, is also
one of the most efficient. Gaussian elimination, and various algorithms
related to it, operate on the principle of exchanging the given system (1.1) for
another system (1.1A) that has precisely the same set of solutions but one
that is easier to solve. Then (1.1A) is exchanged for still another system
(1.1B) that has the same solutions as (1.1) but is even easier than (1.1A) to
solve. By increasing the ease of solution at each step, after m or fewer
exchanges we obtain a system with the same solutions as (1.1) and in an
algebraic form that easily produces the solution. For convenience, we say
that two systems of linear equations are equivalent if and only if each solu-
tion of each system is also a solution of the other.

We first illustrate this idea with a specific example. Soon we shall be able
to verify that the following two systems are equivalent, and for the moment
we shall assume that they are,

6xl+2x2—‘X3+5X4= ‘-8, X3 ol x3+x4= —31
3x‘-*-2xz +X3+3X4='—'1, and x1+ZX3 = 4,
4xy +x; —x3+ 3x,=—6, X3 —Xe= 2

Obviously, we would prefer to solve the second system. To do so we let x,, be
any number, say ¢. Then

Xg= ¢,
X3= 24 x4=2+c¢,
X= 4-2%3=4-22+¢c)= -2
Xy ==34+x3—x4=-3+Q2+¢)—c= -1,
and we concludé that for any number ¢ the ordered quadruple

—1+0c
0-2
2+ <
0+ ¢
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is a solution of the second system and hence of the first. Furthermore, it is
easy to see that any solution of the second system must be of that form, and
therefore we have produced the complete solution of the first system. There
are infinitely many solutions because each value of ¢ produces a different
solution. When a system has infinitely many solutipns, a complete descrip-
tion of all solutions involves one, two, or more arbitrary constants.

The second system is easy to solve betause of its special algebraic form:
one of the variables (x,) appears with nonzero coefficient in the first equa-
tion but in no subsequent equation, another variable (x,) appears with
nonzero coefficient in the second equation. but in no subsequent equation,
and so on. A system of this nature is said to be in echelon form. To solve a
system that already is in echelon form we first consider the last equation; we
solve for the first variable of that equation in terms of the constant term and
the subsequent variables. Each subsequent variable may be assigned an
arbitrary value. In this case

X4=é,

X3=2+x‘=2+rc.

Then we consider the next to last equation; we solve for the first variable
of that equation, assigning an arbitrary value to any subsequent variable
whose value is not already assigned. For this example,

X;=4-2x3=4-22+c)= -2d

Continuing in the same way with each preceding equation, we eventually
obtain the complete solution of the system.

What we need, therefore, is a process that leads from a given system of
linear equations to an equivalent system that is in echelon form. And thatis
precisely the process that Gaussian elimination provides, as we now shall
see. Beginning with a system in the form (1.1), we can assume that x, has a
nonzero coefficient in at ledst one of the m equations. Furthermore, because
the solution of a system does not depend on the order in which the equations
are written, we can assume further that a,, # 0. Thus we can solve the first
equation for x; in terms of the other variables:

e | PR
Xy = a3 {dy — agax; — @g3x3 — 0 — ag%,)

We then replace x, by this expression in each of the other equations. The
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resulting equations then contain variables x, through x,, , and after collect-
ing the coefficients of each of these variables we obtain the equivalent system

@11%1 + @13%3 +813X3 + +aX, =dy,
(l.lA) bzzxz + bz3x3 B S o bz,,x, =e,,

bmle + bm3x3 +- 0+ bmuxn= Em-

At this stage we need not be concerned with explicit formulas for the new
coefficient b;; and the new constants ¢;, where i > 2 and j > 2. Such formulas
result immedidtely from a bit of routine algebra, and we record the resuits
here for future reference.

—_ -1
bu =a;— 4334y Qyjs

= -1
€ —,dt —ajagyd,.

The system (1.1A) is said to be obtained from (1.1) by means of a pivot
operation on the nonzero entry a, ;. .

The second stage of Gaussian elimination leaves the first equation of
(1.1A) untouched but repeats the pivot process on the reduced system of
m — 1 equations in n — 1 variables:

baaxs + byaxs + -+ + byx, = e,
bazxs +b3axy + - + by x, = €3,

/

buzX; + D3 X3 4 ¢ + BpXy = .

Cono“éivably each coefficient b;, is zero; if so, we look at the coefficients b5,
in order, and continue in this way until we find the first nonzero coefficient,
say b,,. Again because we can write these equgtions in any order without
changing the solutions, we can assume that r = 2. Then we pivot on b,,; that
is, we solve for x, as

Xg = bz_nl(ez - b2.1+ 1 X541 — Tt bann)’

and substitute this expression, for x, into each of the last m — 2 equations.
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Together with the original first equation the new system, equivalent to (1.1)
and to (1.1A), is of this form:

By1Xy 4+ B X+ Gy g1 Xy F 0+ A Xy =d,,
(llB) bz,x, + b2_3+1x,+1 4+ bznx,, =ée,,
C3,541 %541+ "+ CapXy =f3,

cm.s;k 1Xsart 0t CuaXy =fn|'

Then the pivot process is repeated again on the last m — 2 equations of
(1.1B), leaving the first two equations untouched. Continuing in this manner,
we eventually obtain a system that is equivalent to (1.1) and is in echelon
form.

TFo illustrate the method of Gaussian elimination we retumm to our
previous example of three equations in four unknowns. The first equation is

6x, + 2x; — x3 + 5x;, = —8
We pivot on the coefficient 6 by solving for x,,
xy = Y(—8 — 2x3 + x3 — 5x4),

substituting this expression in the last two equations, and collecting like
terms. The result, which you should verify on scratch paper, is the equivalent
system,

6x; + 2x;3— X3+ Sxq4= -8,
Xp+ Yaxs + Yaxg= 3,
= Yaxy— x5 — Vaxg = ~ %
Now we pivot on the coefficient 1 by solving the second equation for x,,
X3 =3—Yix3 — Vixq,

substituting this expression for x, in the third equation, and collecting like
terms. Again you should verify that the result is

6x1 +2,x2— x3+ 5x‘="'8,
X3+ Yax3 + Vaxe= 3,

Yexs — Yexa= .



