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Preface

Fluorescence methods are being used increasingly in biochemical, medical,
and chemical research. This is because of the inherent sensitivity of this
technique, and the favorabie time scale of the phenomenon of fluorescence.
Fluorescence emission occurs about 107° sec (10 nsec) after light absorp-
tion. During this period of time a wide range of molecular processes can
occur, and these can effect the spectral characteristics of the fluorescent
compound. This combination of sensitivity and a favorable time scale allows
fluorescence methods to be generally useful for studies of proteins and
membranes and their interactions with other macromolecules.

This book describes the fundamental aspects of fluorescence, and the
biochemical applications of this methodology. Each chapter starts with the
theoretical basis of each phenomenon of fluorescence, followed by examples
which illustrate the use of the phenomenon in the study of biochemical
problems. The book contains numerous figures. It is felt that such graphical
presentations contribute to pleasurable reading and increased understand-
ing. Separate chapters are devoted to fluorescence polarization, lifetimes,
quenching, energy transfer, solvent effects, and excited state reactions. To
enhance the usefulness of this work as a textbook, problems are included
which illustrate the concepts described in each chapter. Furthermore, a
separate chapter is devoted to the instrumentation used in fluorescence
spectroscopy. This chapter will be especially valuable for those perform-
ing or contemplating fluorescence measurements. Such measurements
are easily compromised by failure to consider a number of simple
principles.

Insofar as is possible the presentation has been kept simple, with the
minimum use of theory and mathematics. Where extensive equations are
used, a good deal of text is included to explain the origin and meaning of
each expression. The contents of the book should be valuable both for the
person who is considering the use of fluorescence methods, and for the
experienced researcher who desires further background.

vii
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Introduction to Fluorescence

Luminescence is the emission of photons from electronically excited states.
Luminescence is divided into two types, depending upon the nature of the
ground and the excited states. In a singlet excited state, the electron in the
higher-energy orbital has the opposite spin orientation as the second
electron in the lower orbital. These two electrons are said to be paired. In
a triplet state these electrons are unpaired, that is, their spins have the
same orientation. Return to the ground state from an excited singlet state
does not require an electron to change its spin orientation. A change in
spin orientation is needed for a triplet state to return to the singlet ground
state. Fluorescence is the emission which results from the return to the
lower orbital of the paired electron. Such transitions are quantum mechani-
cally “allowed” and the emissive rates are typically near 10®sec™'. These
high emissive rates result in fluorescence lifetimes near 10 ® sec or 10 nsec.
The lifetime is the average period of time a fluorophore remains in the
excited state. Phosphorescence is the emission which results from transition
between states of different multiplicity, generally a triplet excited state
returning to a singlet ground state. Such transitions are not allowed and
the emissive rates are slow. Typical phosphorescent lifetimes range from
milliseconds to seconds, depending primarily upon the importance of deacti-
vation processes other than emission. Throughout this book we will be
concerned primarily with the more rapid phenomenon of fluorescence.
Substances which display significant fluorescence generally possess
delocalized electrons formally present in conjugated double bonds. Some
typical fluorescent substances (fluorophores) are shown in Figure 1.1. One
widely encountered fluorophore is quinine, which is present in tonic water.
If one observés a glass of tonic which is exposed to sunlight, a faint blue
glow is frequently visible. This glow is most apparent when the glass is
observed at a right angle relative to the direction of the sunlight, and when
the dielectric constant is decreased by additives. The quinine, which is
present in the tonic, is excited by the ultraviolet light from the sun. Upon

1
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H (CaHs)2 -
HO »0 N O (CaHs)2
QUININE FLUORESCEIN RHODAMINE B

ANTHRACENE : PPO POPOP

Figure 1.1. Structures of typical fluorescent substances.

return to the ground state the quinine emits blue light with a wavelength
near 450 nm. Additional fluorophores are also frequently encountered.
The green or red-orange glow sometimes seen in antifreeze is probably
due to trace quantities of fluorescein or rhodamine, respectively (Figure
1.1). Polynuclear aromatic hydrocarbons, such as anthracene and perylene,
are also fluorescent, and may be partially responsible for the blue fluores-
cence frequently seen from gasoline. And finally, compounds such as PPO
and POPOP are used in scintillation cocktails and are thus frequently
encountered in biochemical research. These compounds are highly fluores-
cent. Numerous additional examples could be presented. Instead of listing
them here, examples will appear throughout the book, with reference to
the useful properties of the individual fluorophores. In contrast to aromatic
organic molecules, atoms are generally nonfluorescent in condensed phases.
One notable exception is the group of elements commonly known as the
lanthanides.'”’ The fluorescence from europium and terbium ions results
from electronic transitions between f orbitals. These are shielded from the
solvent by higher filled orbitals.

Fluorescence spectral data are generally presented as emission spectra.
A fluorescence emission spectrum is a plot of the fluorescence intensity
versus wavelength (in nanometers) or wave numbers (in cm ). Two typical
fluorescence emission spectra are shown in Figure 1.2. Emission spectra
vary widely and are dependent upon the chemical structure of the
fluorophore and the solvent in which it is dissolved. The spectra of some
compounds, such a perylene, show significant structure due to the individual
vibrational energy levels of the ground and excited states. Other com-
pounds, such as quinine, show spectra which are devoid of vibrational
structure.
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Figure 1.2. Absorption and fluorescence emission spectra of perylene and quinine. Emission
spectra cannot be correctly presented on both the wavelength and wave number scales. The
wave number presentation is correct in this instance. Wavelengths are shown for convenience.
See Chapter 2. (From Ref. 2.)

1.1. Jablonski Diagram

The absorption and emission of light is nicely illustrated by the energy-
level diagram suggested by A. Jablonski.”’ The ground, first, and second
electronic states are depicted by So, S1, and S, respectively (Figure 1.3).
At each of these electronic energy levels the fluorophores can exist in a
number of vibrational energy levels, depicted by 0, 1, 2, etc. In this diagram
we excluded solvent effects, which will be considered in more detail in
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Figure 1.3. Jablonski diagram.

Chapter 7. Note that the transitions between the various electronic levels
are vertical. This presentation is used to illustrate the instantaneous nature
of light absorption. This process occurs in about 107" sec, a time too short
for significant displacement of nuglei. This, of course, is the Franck—Condon
principle.

The energy spacing between the various vibrational energy levels is
illustrated by the emission spectrum of perylene (Figure 1.2). The individual
emission maxima (and hence vibrational energy levels) are about 1500 em™!
apart. The Boltzmann distribution describes the relative number of perylene
molecules in the 0 and 1 vibrational states. The ratio (R) of molecules in
each state is given by |

R=¢™®ET (1.1)

where AE is the energy difference, k is the Boltzmann constant, and 7 is
the temperature in degrees kelvin (K). Assuming room temperature of
300K this ratio is about 0.01. Hence most molecules will be present in
the lowest vibrational state, and light absorption results mainly from
molecules in this energy level. Because of the larger energy difference
between S, and S, essentially no fluorophores can populate S, as a result
of thermal energy. It is interesting to note that even the smail, thermally



Introduction to Fluorescence 5

induced population of molecules in the first excited vibrational state can
be detected using absorption difference spectra at various temperatures.
Following light absorption, several processes usually occur. A
fluorophore is usually excited to some higher vibrational level of either S
or §,. With a few rare exceptions, molecules in condensed phases rapidly
relax to the lowest vibrational level of §,. This process is called internal
conversion and generally occurs in 1072 sec. Since fluorescence lifetimes
are typically near 107® sec, internal conversion is generally complete prior
to emission. Hence, fluorescence emission generally results from the ther-
mally equilibrated excited state. As for absorption, the electronic transition
down to the lowest electronic level also results in an excited vibrational
state (Figure 1.3). This state will also reach thermal equilibrium in about
10 "2 sec. An interesting consequence of these considerations is that the
absorption spectrum of the molecule reflects the vibrational levels of the
electronically excited states, and the emission spectrum reflects the vibra-
tional levels of the ground electronic state. Generally, electronic excitation
does not greatly alter the spacing of the vibrational energy levels. As a
result, the vibrational structures seen in the absorption and the emission
spectra are similar. =g 1Ok
Molecules in the S state can also undergo conversion to thefirst triplet
state 7;. Emission from T is termed phosphorescence, and generally is
shifted to longer wavelengths (lower energy) relative to the fluorescence.
Conversion of S, to T, is called intersystem crossing. Transition from T,
to the ground state is forbidden, and as a result the rate constant for such
emission is several orders of magnitude smaller than those of fluorescence.
Although not indicated explicitly in Figure 1.3, a variety of other processes
can influence the fluorescence emission. These factors include solvent
effects, solvent relaxation, quenching, and a variety of excited state reac-
tions. These will be considered in detail in later sections of this book.

1.2. Characteristics of Fluorescence Emission

The phenomenon of fluorescence displays a number of general charac-
teristics. Exceptions are known, but these are infrequent. Generally, if any
of the following characteristics are not displayed by a given fluorophore,
one may infer some special behavior for this compound.

1.2.1. Stokes’ Shift

Except for atoms in the vapor phase, one invariably observes a shift
to lower wavelength (i.e., a‘loss of energy) of the emission relative to the
absorption. This phenomenon was first observed by Stokes in 1852 in



