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Preface

Further Physics is written for students taking the
Advanced Level Physics course in Hong Kong.
With careful selection of the text material, it can
also be used for the Advanced Supplementary Level.
It is published in two volumes:

Volume 1 Introduction
Mechanics
Wave motion
Volume 2 Fields, electricity and

electromagnetism
Matter

Although self-contained, Further Physics is best
used together with the following titles:

Further Physics Experimental Workbook, by
P. Sun

Practical Physics for the HKALE, by A. Li and
P. Sun

The three titles constitute a full set of physics books
published by Longman for the Advanced Level.
The progress in Further Physics and that in the
Experimental Workbook are closely parallel with
frequent cross-references. In general, experimental
details will be found in the workbook, whereas the
integration of experimental findings into a concep-
tual framework will be given emphasis in the
textbook.

The content in the textbook is closely adhered
to the examination syllabus in the sense that all
the prescribed topics are covered, and to the ne-
cessary depth. However, in the firm belief that
nothing is more important than a sure and thor-
ough grasp of fundamental concepts, we have
treated a few topics to somewhat greater depth
than is likely to be required for examination pur-
poses. Additional topics of interest are included. A
few topics provide background for practical work.
In such cases, reference is made to Practical
Physics for the HKALE for the detailed experi-
mental set-up and procedure.

It is not intended that teachers should lecture on
every topic covered. Students at this level should
develop the ability and habit of learning on their
own. For example, the two introductory chapters,
sections reviewing lower form work, material out-
side the examination syllabus as well as material

of a largely factual nature can all be assigned as
home reading. For other topics, teachers may like
to follow the text more closely. It must be realised
that students should be selective in what they read,
and we hope that different students can derive
different benefits and insights from this textbook.

One outstanding feature of the Advanced Level
Physics Examination is the Written Practical of
Paper III. This is of great value from an educa-
tional point of view precisely because there is no
set syllabus, thus focusing upon understanding
rather than factual knowledge. Not surprisingly,
many students do not feel confident about this part
of the examination and would welcome opportuni-
ties for practice. Accordingly, a number of such
exercises are included. For the sake of greater in-
terest and sense of realism, several of these exercises
are based on simplified versions of research work
carried out here in Hong Kong, and we thank our
friends and colleagues who made available the
details of their work, in particular Drs. C.L. Choy,
A.F. Leung and W.P. Leung. These exercises pro-
vide occasions to learn about experimental design
and data analysis, and to broaden horizons in ex-
perimental physics. However, it should be em-
phasised that actual experimental skills can only
be acquired through practice in the laboratory.

As mentioned before, this text is also written
for the Advanced Supplementary Level. The re-
quired material is in fact a subset of that for the
Advanced Level, and students can find their way
easily enough.

We welcome any suggestions for improvement.
Last but not least, our thanks are due to Mr. S.K.
To for drawing all the diagrams in this book.

P. Fung ik
Professor of Physics
The University of Hong Kong

P. Sun %4
Senior Physics Master
Cheung Sha Wan Catholic Secondary School

K. Young sl
Professor of Physics
The Chinese University of Hong Kong
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CHAPTER 17

GRAVITATION

Motion is determined by forces, many of which

act between objects in contact with each other — a

push or a pull, friction, tension in a string, etc.

However, fundamentally, all forces belong to one

of the following four types:

(a) Gravitational force,

(b) Electric and magnetic forces,

(c) Weak force responsible for beta decay,

(d) Strong force which holds the nucleus together.
All these forces act between objects which are

not necessarily in contact, i.e. they may act over a

distance. Gravity will be discussed in this chapter

and electricity and magnetism will be discussed in

later chapters. The weak and strong forces will

only be touched upon very briefly later in the

course.

17.1 Concept of field

A mass m released near the earth’s surface falls
with an acceleration g = 9.8 ms-2. According to
Newton’s second law, the mass must experience a
downward gravitational force mg. Similarly, a
charge g placed near another charge experiences
an electric force; a current-carrying wire placed
near a magnet will experience a magnetic force.
We may say that the mass m is inside a gravita-
tional field, the charge g is inside an electric field
and the current-carrying wire is inside a magnetic
field. A field (1)) is simply a region where a force
is experienced by a suitable test object.

In particular, a gravitational field ( | /J# ) is a
region where a gravitational force is experienced
by a test mass. The force must be proportional to
the mass m because all objects fall at the same
rate, provided air resistance is negligible. Thus the
intensity of the gravitational field, also called the
gravitational field strength ( 5| /858 ), is
defined as the force per unit mass.

Gravitational field strength
gravitational force
mass

In other words, the gravitational field strength is
F/m = g, which has a magnitude of 9.8Nkg~!
near the earth’s surface. Note that Nkg~'is the
same as ms~ 2

INkg ' = 1l(kgms kg '=1ms?

Also, g should be regarded as a vector in the
same direction as the force, i.e. downward. Note
the following features of the field strength.

(a) Although the field strength is exactly the same
as the ‘acceleration due to gravity’, the new
terminology emphasises that g is present even
when the object is not accelerating (because
there are other forces).

(b) If a mass m is placed near the earth’s surface,
it is subjected to a force mg; if the mass is
removed, there is no force. But we regard g as
being always present; it is simply a property of
that point in space.

(c) The value of g may vary from point to point,
e.g. it is smaller at points far from the earth. It
may even vary from time to time. For example,
for a fixed point in outer space, g may be very
large when a planet passes by, but becomes
very small when the planet has moved away.

Although the most common example of a grav-
itational field is that due to the earth, there will of
course be such fields due to other objects as well.

We now mention a few points of notation.

(a) We shall often use g (= 9.8 Nkg~') to denote
the gravitational field strength near the earth’s
surface. The value elsewhere will often be
denoted as g’ to avoid confusion.

(b) If we choose the upward direction as positive,
then g should be —9.8 Nkg-'. However, the
direction of the gravitational force is always
obvious, so we shall usually omit the sign and
only write the magnitude of g or the gravitat-
ional force F.
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(c) Physicists often use the term ‘field” to mean
‘intensity of the field’, i.e. the ‘field strength’.
This is the modern usage.

17.2 Inverse square law
and circular orbits

It is obvious that the gravitational force F between
two objects 4 and B is attractive. The force on A
is directed towards B and vice versa. What about
the magnitude of the force?

It is also obvious that F becomes weak if the two
objects are far apart. How does F depend on the
separation 7? This section discusses this force and
also circular motion under the influence of this
force. More complicated motion (e.g. elliptical
orbits) will be discussed in Section 17.6.

Motion of the moon

Recall the following experiment. A mass m
attached to the end of a string is swung in a circle
of radius r (Fig.17.1). It is observed that the
circular motion has a period 7. Clearly there must
be a centripetal tension F to keep the mass in
circular motion:

y? 2nwr/T)?
F=ma=m—= n———)
r r

F r

= 472 1

m N T? )
Thus the tension force per unit mass can be found
from the radius and period of motion.

v
m

Fig. 17.1

In exactly the same way, the moon is moving in
a circle of radius » = 3.84 x 10°* m around the
earth, with a period 7 = 2.36 x 10°s(27.3d). The
centripetal pulling force is provided by the gravit-
ational attraction of the earth (Fig. 17.2). The
force per unit mass due to the earth is found using

Eq.(1); we denote the result as g ":

3.84 x 10®m
(2.36 x 10°5)?

2.72 x 103N kg~

’ 2

g' =4nr x

Il

Compared to the value g = 9.8 N kg~' on the

surface of the earth,

£ 278 x 104 ~ —
g

moon

Fig. 17.2

The usual value of g refers to a point whose
distance from the centre of the earth is just the
radius R of the earth, R = 6.38 x 10°m. Let us
assume that g’ varies as an inverse power of the
distance r from the centre of the earth:

g o ’-""

The minus sign means that g decreases when r
increases. Then

g_':(L

- 3.84 x 108m \ " ‘,,
g R ) B ( ) = 0

6.38 x 10°m

It is easily seen that n = 2, i.e. the gravitational
force varies as 1/r2.

Planets

Even more convincing evidence can be obtained
by considering the motion of planets around the
sun. All the planets move in nearly circular orbits.
(See Section 17.6 for a more accurate description.)
Let the mass of a planet be m, its distance from
the sun be r and the period of motion be 7.
Assume that the force per unit mass due to the
gravitational attraction of the sun varies as an
inverse power of r:

£t
where k is a proportionality constant which is the
same for all planets in the same solar system.
From Egs. (1) and (2)



4m L = L3
TZ rn
rn»l k
=t 3
T? 47 )

Thus the ratio r"+!/T?* should be the same for all
planets in the same solar system. From the known
orbit radii and periods of motion of the planets
(Table 17.1), it is found that the values r3/T? are

the same. Thus n =

2,i.e. Fo 1/r2

Orbit radius | Period | r° , 15 >

Planet AU Ty T:/AU y
Mercury &g 0.387 0.241 0.998
Venus &M% 0.723 0.615 0.999
Earth  hEk 1.000 1.000 1.000
Mars kA 1.524 1.881 1.000
Jupiter A& 5.203 11.862 1.001
Saturn t2 9.539 29.458 1.000
Uranus X & 19.182 84.013 1.000
Neptune # [ &2 30.058 164.793 1.000
Pluto EI[ & 39.439 243.686 1.000
Table 17.1 Orbit radii and periods of motion of planets

In astronomy, it is convenient to express dis-
tances in astronomical units (AU), defined as the
mean distance of the earth from the sun:

1 AU = 1.495 X 10"m

and the time in years. Naturally, for the earth,
r’/T? = 1 AU?® y=? exactly. Thus the constant k
for our solar system is

k =47 AU y°
4 7w (1.495 x 10" m)?* (365 x 24 x 3600 s)?
= 1.326 X 10¥m?’s~?
The fact that /72 is the same for all planets in
our solar system was first observed by Kepler, and

is known as Kepler’s third law of planetary
motion. (See Section 17.6.)

Il

Law of gravitation

Consider the gravitational force F between an
object of mass M (say the sun) and another object
of mass m (say the earth) at a distance r apart.
This force acts on and is proportional to m.
According to Newton’s third law, an equal force

acts on M, so the force should also be
proportional to M. Moreover, we have just shown
that F o« 1/r% Putting all these together:

o @

r?

F=G

where the proportionality constant G is called the
universal gravitational constant. Eq. (4)
Newton’s inverse square law of universal
gravitation — only gives the magnitude of F. The
direction is of course attractive. Thus if the
radially outward direction is regarded as positive,
then F should have a minus sign.

Let M be the sun and m be any planet. Then by
comparing Eq. (2) (with n = 2) with Eq. (4), we
see

GM =k = 1.326 X 10®m?’s—? (Sun)

By considering planetary motion alone, we cannot
separate G and M. Cavendish first determined the
value of G in 1798 by measuring the tiny
gravitational force between two metal balls. Such
experiments give

G = 6.67 x 10" N m2kg?2
The mass of the sun can then be deduced:

oo ko 1326 x 100 mis
"G 6.67x10"Nmikg?

= 1.99 x 10% kg

(Sun)

Note that the value of G is universal. However the
value of k (and M) applies only to the sun.

Mass and density of the earth

Knowing G, we can also find the mass of the earth
M. A mass m on the surface of the earth is
subjected to a force

Mm
RZ

where R is the radius of the earth. But this must be
equal to mg, so

F=G

_GM

= )
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Hence we can calculate the mass of the earth to be

gR? _ (9.8 ms~?)(6.38 x 10° m)?
G 6.67 x 10-" kg

5.98 x 10* kg

We can also determine the value of M by
considering the lunar orbit. (See Problem 4.)
The average density of the earth is

p $TR3 47RG
_ 3 x9.8ms?
41 X 6.38 X 10°m X 6.67 X 10~ "N m?2kg 2
5.5 x 10°kgm~3

i.e. 5.5 times the density of water. The masses and
average densities of the other planets are given in
Table 17.2.

M:

(Earth)

Planet Mass/kg Average density/10° kg m 3
Mercury | 3.33 x 108 5.46
Venus 4.87 x 10% 5.23
Earth 5.98 x 10* 5.52
Mars 6.42 x 108 3.92
Jupiter 1.90 x 107 1.31
Saturn 5.68 x 10% 0.70
Uranus 8.72 x 10% 1.3
Neptune | 1.02 x 10% 1.66
Pluto 6.6 x 102 4.9

Table 17.2 Masses and densities of planets

Circular orbits

We now regard the inverse square law as known
and summarise the physics of circular motion of a
small mass m (‘planet’) around a large mass M
(‘sun’). From the force law and Newton’s second
law

GMm v? Qnr/T)?
=ma=m-—=m-——
r? r r

r? GM
T? = 4n® ©)

Now consider satellites moving around the
earth. Suppose a satellite is in an equatorial orbit
and has a period of exactly one day (Fig. 17.3).
The earth itself also rotates once a day. So the

Fig.17.3 Parking orbit (not to scale)

satellite always stays above the same spot on earth
if the two are rotating in the same direction. Such
a parking orbit is convenient for receiving radio
signals from one place and transmitting them to
another (Fig. 17.4).

Fig. 17.4 Communication by satellite

The radius of a parking orbit can be found from
Eq. (6), using M = 5.98 x 10¥%kgand 7 = | d =
8.64 x 10*s. We find

r’3 = GMT?.

47

(6.67 x 10-""N m?kg~?(5.98 x 10*kg)
(8.64 x 10%s)*/4x?

75.5 x 10¥ m3
4.23 x 107m = 42300 km

r

This is the distance measured from the centre of
the earth. The height from the surface of the earth
isr—R = 36000 km. Note that r is about 6.6 times
the radius of the earth. So the height is very
large indeed and is well above the ionosphere
which extends from about 80 km to 400 km from
the surface of the earth. For this reason short



waves in the 6-20 MHz range cannot be used,
since they are reflected from the ionosphere.
Instead microwaves in the 3-30 GHz range are
used for communication through satellites.

At this height the speed v of the satellite is

- 2nr 2w X 42300 km
T 864 x 10°s
= 3.08 km s™!

This speed is considerably slower than that of a
satellite travelling in a circular orbit close to the
earth’s surface (7.91 km s ).

17.3 The earth’s gravity

Newton’s inverse square law of gravitation refers
to two point masses a distance r apart. In other
words, the size of the objects must be small
compared to r. This condition is certainly true for
the motion of planets around the sun, or the moon
around the earth. We have implicitly assumed that
the inverse square law applies even for an object
near the earth’s surface, i.e. the distance r to the
centre of the earth is about the same as the radius
R of the earth itself. We have assumed that the
whole of the mass of the earth can be regarded as
being at its centre. How do we know that this is a
valid assumption?

Newton’s theoretical calculation

Newton used the following approach to find the
gravitational force on a mass m a distance r from
the centre of the earth (or any spherically sym-
metric object). Imagine that the earth is cut into
little pieces m,, m,, ... (Fig. 17.5). Each piece can
be regarded as a point mass, and its force on the
mass m follows the inverse square law. The total
force due to all the little pieces is then obtained by
vector addition. Newton thus proved that for any
spherical distribution with total mass M, the total
force on a mass m outside the distribution is still
given by Eq. (4). In other words, all of the mass
seems to be concentrated at the earth’s centre. If
we assume that the earth is a sphere, then this
result implies that at any point outside the earth
and a distance r from the centre of the earth
g = E_gM

m rk

m

Fig. 17.5

Experimental verification

In this century it has become possible to verify the
above conclusion experimentally. Here we give the
essential idea. See Section 5.5 for a similar discus-
sion.

Fig. 17.6 shows the flight of the spacecraft
Apollo XI from the earth £ to the moon, reaching
the moon at position M1. The spacecraft travelled
with the moon from M1 to M2 and then returned
to earth. The figure is drawn according to an
observer on earth. Thus the earth appears to have
been stationary. (Therefore the observer is non-

o — % —o

— ~

moon (shown at 24 h intervals)

Fig. 17.6 Sketch of typical trajectory for manned moon flight



GRAVITATION

inertial. However, this effect, being quite small,
can be neglected.)

The engine was shut off after point 1 except for
a brief interval between 6 and 7, and between 8
and 9. Disregarding these portions, we can say
that the spacecraft moved only under the influence
of the earth’s gravity, the gravitational attraction
of the moon being negligible for all the points
labelled. The velocity v is known for the points 2,
3, ... and also for points 2A, 3A, ... which were
a short time interval Az = 600 s after the respec-
tive points 2, 3, The data are shown in

Table 17.3.
Distance r
from centre Speed
Event Position | of Earth/10°m | v/ms™!
Rocket 1 11.054 8406
not burning:
coast begins
2 26.306 5374
2A 29.030 5102
3 54.356 3633
3A 56.368 3560
4 95.743 2619
4A 97.242 2594
5 169.900 1796
SA 170.954 1788
No rocket burn 6 209.228 1531.56
until this time
3-second burn, 7 209.232 1527.16
changing speed
and direction
8 240.624 1356
Coasting 9 241.637 1521
9A 240.740 1524
10 209.722 1676
10A 208.737 1681
11 170.891 1915
11A 169.766 1923
12 96.801 2690
12A 95.241 2715
13 56.368 3626
13A 54.310 3699
14 28.427 5201
14A 25.640 5486
15 13.311 7673
15A 10.036 8854

Table 17.3

Fig. 17.7a shows the situations at the points 2
and 2A. The change of velocity is the vector
difference (Fig. 17.7b)

AV = v —

The force per unit mass is then
F _ —~ AV
—_— = a =
m At

which is readily found. Note that the time interval
At is regarded as sufficiently short, so that @ can
be taken to be the instantaneous acceleration.

Av
2A v 7' -
v
10
: Y
2
(a) (b)

Fig. 17.7 Change of velocity (not to scale)

The calculation is slightly complicated on
account of the small angle 6, which is moreover
not directly known from Table 17.3. So to illus-
trate the very simple physics, we imagine a simpler
situation — the spacecraft is launched and returns
vertically along a straight line (Fig. 17.8). The cal-
culation is shown in Example 1.

Fig.17.8



Example 1

Suppose the spacecraft Apollo XI was launched
vertically. The distance r from the centre of the
earth and the upward velocity v were recorded for
various times (Table 17.3). Calculate the force per
unit mass acting on the spacecraft in the interval
2-2A.

Solution

The points 2 and 2A are separated by a time
interval Ar = 600s, during which the average
acceleration is

g = Av  _ (5102 — 5374) m s~!
At 600 s
= —0.453 ms?

The time interval is sufficiently short for this to be
regarded as the instantaneous acceleration. Since
the engine is shut off, there is only the gravita-
tional force F acting on the spacecraft, and a =

g = L = 0453Nkg
m
In the same way, we can find the value of g’
for various values of r as shown in Table 17.4. A
plot of g’ versus 1/r* (Fig. 17.9) gives a straight
line passing through the origin, showing that the
gravitational field strength of the earth obeys the

inverse square law.

Gravitational | Average distance r
' ,f_leldi1 from centl;e of %/10*‘%*2
Points g'/Nkg Earth/10°m r
2,2A 0.453 27.7 13.03
3,3A 0.122 55.4 3.26
4, 4A 0.042 96.5 1.07
5, 5A 0.013 170.4 0.34
Table 17.4

F/m is just the force per unit mass, i.e. This result, being consistent with Newton’s
gravitational field strength g’. In magnitude only, calculation, can be regarded as a verification of
g'/Nkg'

A
04
03 f
0.2
01}

1 1 A A 1 1
0 2 4 6 8 16 12

Fig. 17.9 Variation of g’ with 1/r?

%/10*‘6 m-2



the principle of superposition. We now believe
that this principle is valid if the field strength is
not too strong, namely if g’ < ¢2/R, where c is the
velocity of light and R is the typical size of the
system. This condition is easily satisfied in the case
of the earth.

An approximate form for g’ can be derived for
points near the earth’s surface. At a height A
above the ground, i.e.r = R + h,

, M GM h)—z
-G _ h
& R +h R <1+R
GM h
T R? (' 2?)

2h
1—2) forn <R
g( R) or

where ¢ = 9.8Nkg~' is the gravitational field
strength at the surface of the earth.

Variation with latitude

The apparent value of g on the earth’s surface is
not really uniform, but varies with latitude 3. The
equatorial value g, (9.780Nkg~') is slightly
smaller than the polar value g, (9.832Nkg™).
Apart from minor local variations, g depends on
the latitude in a smooth way, as expressed by the
empirical formula

g = 9.83221 (1 — 0.0053 cos?B) N kg~!

Most of the variation of g with latitude can be
explained by means of the rotation of the earth.

First imagine that the earth does not rotate and
is a perfect sphere of radius R. Then g would be
the same everywhere on the earth’s surface, with
the ‘standard’ value

_ GM
8o = R?
Next consider the real earth. Fig.17.10 shows a
> i
m a
B
B
mgo

Fig. 17.10
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mass m resting on the surface of the earth at a
latitude B. It is subjected to a gravitational force
mg, directed towards the centre of the earth, and
to the normal reaction force N due to the ground.
(If the mass rests on the pan of a spring balance,
then N is the ‘weight’ shown by the balance.)
However, these two forces do not cancel each
other exactly, because the mass m is not at rest,
but performing circular motion about the axis of
the earth. The angular velocity is

w=2wrd!'=7.27 x 10°s~!

while the radius of the circular orbit is R, =
R cos 3. So there is an acceleration

a = w’R, = w’R cosf
which has a radial component given by
a, = acos 8 = w'R cos?

The component in the tangential direction has a
negligible effect.

Now consider Newton’s second law, applied to
the radial direction

net force = ma,
a) = m (g, — w'R cos? f3)

mg, — N =
N=m(g(,-—

If we express the ‘weight’ N as mg, then
g =g,— wRcos’B = g,(1—e€cos?f)
where the dimensionless centrifugal parameter ¢ is

w’R
&o

If the mass is at the pole, the centripetal
acceleration is zero, and the above formula gives
g = g, as expected.

Thus the rotation of the earth gives a correction
of the right form, but the coefficient € is about
40% too small. The discrepancy is due to the fact
that the earth is oblate, i.e. the polar radius being
0.335% smaller than the equatorial radius. The
oblateness has two effects.

(a) Because the earth is not exactly spherical,
Eq. (4) is no longer exactly correct. In other
words, we cannot imagine the whole mass to
be at the centre. This is called the quadrupole
moment effect.

(b) Evenif Eq. (4) holds exactly true, i.e. g o< 1/r2,
the value of r would depend slightly on latitude.

When the oblateness is taken into account, we
arrive at a better theoretical value for the
correction factor in the empirical formula. In

= 0.00344

€ =



particular, the coefficient 0.0053 is predicted to
within 20%.

The rotation and the oblateness of the earth
must not be regarded as entirely independent
effects. We believe the earth to be a hot molten
liquid when it was first formed. The rotation of
the earth caused the ‘liquid drop’ to assume a
slightly oblate shape. Thus even the oblateness
effect is indirectly due to the rotation of the earth.

17.4 Field lines

Let us try to represent the gravitational field

strength g pictorially in the following way.

(a) We draw field lines or lines of force ( /Jf¥) in
the direction of g .

(b) The density of field lines is proportional to the
magnitude of g .

Field lines never cross; if they did, there would be

two directions of g at the same point, which is

impossible.

Such a picture tells us the magnitude and
direction of g , i.e. everything about g . Fig. 17.11
shows the field lines near the earth’s surface —
they are uniform in density, and they point
downwards.

Fig. 17.11

Everything we know about the gravitational
field can be re-stated as the properties of field
lines. Firstly, suppose a field liffe forms a loop
(Fig. 17.12). Move a mass around the loop in the
same direction as g. Then the gravitational force is
always doing positive work on the mass. After one
cycle, the net work done is non-zero. The force
would be non-conservative. But we know that
gravity is conservative. (See Chapter 5.) Thus

Fig. 17.12

Secondly, consider a mass M at the centre
(Fig. 17.13) and compare the field strength at
different radii. The field strength, i.e. the density
of lines, is proportional to 1/r2. However, the lines
penetrate a sphere of area 4«72 Thus the number
of lines penetrating every sphere is the same. In
other words, the lines are continuous and
penetrate all spheres. In fact they penetrate every
closed surface surrounding the mass.

Gravitational field lines are continuous and
only stop on meeting a mass. They do not
start or stop in empty space.

0

Fig.17.13

Moreover, on comparing the fields at the same
distance (say 1 m) from two masses, it is obvious
that the density of lines, i.e. the field strength,
should be proportional to each mass. Thus

Gravitational field lines do not form closed
loops.

The number of lines attached to each object
is proportional to the mass of the object.
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These rules are equivalent to the inverse square

law.

From the above rules we see that the number of
lines crossing a given area is an important
quantity. So we define the flux (i %) @ through a
given area as

@ = number of lines crossing the area

For convenience, we only draw 1 line crossing a
perpendicular area of 1m? to represent a field
strength of 1Nkg~'. It follows that for an area
perpendicular to the field lines (Fig. 17.14)

P
perpendicular area

(8)

Field strength =

/. /

Fig. 17.14 Flux density

So the field strength g is also called the flux
density (4@l ). Alternatively we may write

H = field strength x perpendicular area 9)

{

|

As a simple application of these rules, consider
a spherical shell of mass M (Fig. 17.15a). There
can be no field lines inside the shell, because such
lines would have to end in the empty space inside
the shell. So we conclude:

F A uniform spherical shell gives rise to zero
' gravitational field inside the shell.

Now consider the field outside the shell. Compare
it with the case of a point mass of the same
magnitude at the centre (Fig.17.15b). The toral

(a) (b)
Fig.17.15

number of lines must be the same in both cases
and by symmetry the lines must be evenly spaced
and pointing radially inwards. Thus the lines must
be exactly the same.

A uniform spherical shell gives rise to a
gravitational field outside the shell which is
identical to the field produced by an
equivalent point mass at the centre.

Using these results, you can now easily deduce
the properties of the gravitational field of the
earth.

17.5 Field energy

Potential

We are familiar with the concept of gravitational
potential energy near the earth’s surface. 1f we
move a mass /m up a height 4, the work done is
mgh. So the PE at the upper position is higher by
mgh. If we choose the upper position to be the
reference point, then the PE at the lower position
is —mgh.

If the displacement is not small compared to the
radius of the earth, then the force no longer has a
constant value mg, and the above derivation needs
to be modified. Consider a fixed mass M (such as
the earth) and another mass m which can be
moved about M. Suppose m is initially at a ‘lower
position’ a distance  from M, and we move it to
infinity (Fig. 17.16a). For each little part of the
journey,



