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NONLINEAR PHYSICAL SCIENCE

Nonlinear Physical Science focuses on recent advances of fundamental theories and
principles, analytical and symbolic approaches, as well as computational techniques
in nonlinear physical science and nonlinear mathematics with engineering applica-
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Topics of interest in Nonlinear Physical Science include but are not limited to:

- New findings and discoveries in nonlinear physics and mathematics

- Nonlinearity, complexity and mathematical structures in nonlinear physics

- Nonlinear phenomena and observations in nature and engineering

- Computational methods and theories in complex systems

- Lie group analysis, new theories and principles in mathematical modeling

- Stability, bifurcation, chaos and fractals in physical science and engineering

- Nonlinear chemical and biological physics

- Discontinuity, synchronization and natural complexity in the physical sciences
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Preface

At the foundation of this course material are lectures on a general course in the
theory of oscillations, which were taught by the author for more than 20 years at
the Faculty of Radiophysics at Nizhny Novgorod State University (NNSU).

The aim of the course was not only to express fundamental ideas and meth-
ods of the theory of oscillations as a science of evolutionary processes, but also
to teach the audience the methods and techniques of solving specific (practical)
problems.

The key role in forming this lecture course is played by qualitative methods of
the theory of dynamical systems and methods of the theory of bifurcations, which
follow the tradition of Nizhny Novgorod school of nonlinear oscillations. These
methods are even used when solving simple problems, where, in principle, their
use is not necessary. Such a way of presenting the following material allows us,
first of all, to reveal the essence and fundamental principles of the methods, and,
secondly, for the reader to develop the skills necessary to put them to use, which
appears to be important for the transition to studying more complex problems.

The book is constructed in the form of lectures in accordance with the syllabus
of the course “Theory of Oscillations” for the Faculty of Radiophysics at NNSU.
Yet, the content of nearly every lecture in this book is expanded further than it is
usually presented during the reading of a formal lecture. This makes it possible for
the reader to gain additional knowledge on the subject. At the end of each lecture,
there are test questions and problems for revision and independent study.

This text could also prove useful to undergraduate and graduate students spe-
cializing in the field of nonlinear dynamics, information systems, control theory,
biophysics, and so on.

The author is grateful to the colleagues at the department of “Theory of Oscilla-
tions and Automated Control” for many useful discussions on the topics of this
text and to the colleagues from the department of Nonlinear Dynamics at the
Institute of Applied Physics of the Russian Academy of Sciences.

Nizhny Novgorod Viadimir 1. Nekorkin
October 2014
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1
Introduction to the Theory of Oscillations

1.1
General Features of the Theory of Oscillations

Oscillatory processes and systems are so widely distributed in nature, technol-
ogy, and society that we frequently encounter them in our everyday life and can,
apparently, formulate their basic properties without difficulty. Indeed, when we
hear about fluctuations in temperature, exchange rates, voltage, a pendulum, the
water level, and so on, we understand that it is in relation to processes in time
or space, which have varying degrees of repetition and return to their original or
similar states. Moreover, these base properties of the processes do not depend on
the nature of systems and Can, therefore, be described and studied from just the
point of view of a general interdisciplinary approach. This is exactly the approach
that the theory of oscillations explores, the subject of which are the oscillatory
phenomena and the processes in systems of different nature. The theory of oscilla-
tions gets its oscillatory properties from the analysis of the corresponding models.
As a result of such an analysis, a connection between the parameters of the model
and its oscillatory properties is established.

The theory of oscillations is both an applied and fundamental science. The
applied character of the theory of oscillations is determined by its multiple
applications in physics, mechanics, automated control, radio engineering and
electronics, instrumentation, and so on. In these spheres of science, a large
amount of research of different systems and phenomena was carried out, using
the methods of the theory of oscillations. Furthermore, new technical directions
have arisen on the basis of the theory of oscillations, namely, vibrational engi-
neering and vibrational diagnostics, biomechanics, and so on. The fundamental
characteristic of the theory of oscillations is based on the studied models
themselves. They are the so-called dynamical systems, with the help of which
one can describe any determinate evolution in time or in time and space. It is
exactly the study of dynamical systems that allowed the theory of oscillations
to introduce the concepts and conditions, develop the methods, and achieve
the results that exert a large influence on other natural sciences. Here, we only
mention the linearized stability theory, the concept of self-sustained oscillations
and resonance, bifurcation theory, chaotic oscillations, and so on.

Introduction to Nonlinear Oscillations, First Edition. Vladimir I. Nekorkin.
© 2015 by Higher Education Press Limited Company. All rights reserved.
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1.2
Dynamical Systems

Consider the system, the state of which is determined by the vector x(¢) € R".
Assume that the evolution of the system is determined by a single parameter fam-
ily of operators G',t € R(ort € R,) ort € Z (or t € Z,), such that the state of the
system at the instant ¢

x(t,%y) = G'x, (1.1)

where x, is its initial state (initial point). We also assume that the evolutionary
operators satisfy the following two properties, which reflect the deterministic
character of the described processes.

The first property: G is the identity operator, that is,

x(0,%,) = X, (1.2)
for any x,. This property means that the state of the system cannot change spon-
taneously.

The second property of the evolutionary operators is

Ghth = Gh . G = G2 - Gh, (1.3)
that is,

X(t, + 1y, Xy) = X8y, x(t5, X)) = X(£y, X(£1,Xp)) (1.4)

According to (1.3), the system reaches the same final state, regardless of whether
it does so within one time interval ¢, + ¢, or over several successive intervals ¢,
and t,, equal in sum to £, + £,.

The combination of all initial points e or of all possible states of the system (in
this case, X = R") is called a phase space, and a pair (X, {G'}), where a family of
evolutionary operators satisfies the conditions (1.2) and (1.3), is a dynamical sys-
tem.

Dynamical systems are divided into two important categories, one with contin-
uous time if £ € R or R, and another with discrete time if t € Zor Z,.

The evolution of the system corresponds to the motion of the represen-
tation point in the phase space along the trajectory I' = |J G'x,. The family

t

I'* = | ] G*%y (F‘ = |J G'x, ) is called a positive semi-trajectory going through
t>0 <0
the initial point x,,. If the family{G'} is continuous at ¢ (for dynamical systems

with continuous time), then the trajectories (semi-trajectory) represent contin-
uous curves at X. For the dynamical systems with discrete time, the trajectories
are discrete subsets in the phase space.

Let us introduce the idea of the invariance of a set, which will be necessary in
what follows. The set A C X is called positively (negatively) invariant if it consists
of positive (negative) semi-trajectories, that is, A is positively (negatively) invariant
if G'A C A, t > 0(t < 0). The set A is called invariant if it is invariant both when
positive and when negative.



1.2 Dynamical Systems

1.2.1
Types of Trajectories

Let us define the main types of the dynamical system trajectories.

1) The point X, is called a fixed point of a dynamical system if G'x, = x,, for all ¢
(for systems with continuous time, such points are more often called equilib-
rium points).

2) The point X, is called periodic if there exists T > 0, such that G'x, = x, and

G'xy # X, for 0 <t < T, and its corresponding trajectory |J G‘x, of the
0<i<T

dynamical system passing through this point is periodic. A periodic trajectory
is a closed curve in the phase space of a dynamical system with continuous
time or a set of T-periodic points for the dynamical systems with discrete
time.

3) The point X, is called nonwandering if for any open set U 5 x,, of this point
and any £, > Othere exists t > ¢, such that G*U (| U # @. The trajectory going
through a nonwandering point is called a nonwandering trajectory.

There is a correspondence between the trajectories of dynamical systems and
the motions of real systems. Stationary states of real systems correspond to fixed
points of dynamical systems, periodic motions correspond to periodic trajecto-
ries, and the motions with some degree of repetition of their states in time corre-
spond to nonwandering trajectories.

Note that the aforementioned trajectories can also exist in the dynamical sys-
tems whose phase space is not necessarily R". For example, the phase space of
a dynamical system describing the oscillations of a mathematical pendulum is
a cylinder, X = S' X R, as the state of the pendulum at any moment of time is
uniquely described by its phase ¢(¢) determined with accuracy up to 27(¢ € S')
and by the value of its velocity ¢ € R.

122
Dynamical Systems with Continuous Time

For many dynamical systems with continuous time, the rule, which allows one to
find the state at any point in time according to the initial state, is shown by the
following system of ordinary differential equations:

X =i, %, o 0xy), i=1,2,....N
or, in vector form,
x =Fx),x e R, F : R" - R”, (1.5)

for which the conditions of existence and uniqueness of the solutions are satisfied
(hereafter we denote differentiation in time by an overdot). In this case, the fam-
ily G’x, is simply given by the solution of system (1.5) with the initial condition
x(0,x,) = Xx,,. For example, for the linear system

X = AXx,

3
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where A is an 7 X # matrix with constant elements, the solution has the form
x(£,X,) = e’'x,, where e is an n X n matrix. As the matrices &' and et com-
mute for any pair t,, t,, the property (1.3)

Alti+t) — Al AL — Al A

is fulfilled. Evidently, the property (1.2) is also fulfilled.
In another example, we consider the system given in polar coordinates

p=Ap, ¢=o,

where p and @ are the parameters. The solution of this system has the following
form:

p=pe’. @=wt+aq,
Hence, the evolution operators are specified as follows:

G' : (py, g) = (poe™, 0t + ).

Evidently, the properties (1.2) and (1.3) are fulfilled.

Note that the right-hand side of system (1.5) does not depend on time explicitly.
Such systems are called autonomous. There is also a large number of problems
(e.g., systems subjected to an alternating external force), which are described by
dynamical systems whose right-hand sides depend on time explicitly. They are
called nonautonomous.

123
Dynamical Systems with Discrete Time

Dynamical systems with discrete time are usually defined as follows:
x(n +1) = F(x(n)), (1.6)

where F : R" — R" is the map and n € Z, = {0, 1,2,...} is the discrete time.

For such systems, a trajectory is a finite or countable set of points in R”. Another
equivalent notation is also used sometimes for a dynamical system with discrete
time:

x = F(x),

where X is the image of the point 4 under the action of the map F. In this manual,
we will use both forms of notation of maps.

Let us illustrate the concept of a dynamical system with discrete time by using
the example of a one-dimensional map,

x=2x, mod 1 (1.7)
The phase space of this map is the interval [0,1]. Let x(0) = 1/5. Directly from
(1.7), we obtain
2 4 1

_1 =2 =t W g
*(0)= > x(l)=¢ »a@) =2 = *B)= ¢ ~ad) =g



