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Preface to the Series

in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its series
Monographs in Computational Methods. This series was established and led by the late
academician, Feng Kang, the founding director of the Computing Center of the Chinese
Academy of Sciences. The monograph series has provided timely information of the
frontier directions and latest research results in computational mathematics. It has had
great impact on young scientists and the entire research community, and has played a
very important role in the development of computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the
People’s Republic of China in 1998 combined several subjects, such as computational
mathematics, numerical algorithms, information science, and operations research and
optimal control, into a new discipline called Information and Computational Science.
As a result, Science Press also reorganized the editorial board of the monograph series
and changed its name to Series in Information and Computational Science. The first
editorial board meeting was held in Beijing in September 2004, and it discussed the
new objectives, and the directions and contents of the new monograph series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and
systematic expositions of the advances in information and computational science,
encompassing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will
extend this support to the new Series in Information and Computational Science, so that
the new series can equally enhance the scientific development in information and
computational science in this century.

Shi Zhongci
2005.7






Preface to the Second Edition

There exist many books on numerical methods for linear algebra, and for partial dif-
ferential equations (PDE), separately. However, few seem to combine linear algebra
with numerical PDE. There are also numerous books on error analysis of numerical
PDE, but only a few focus on the stability issue (e.g., Higham [106]). The stabil-
ity analysis of numerical methods is typically addressed by the condition number,
proposed by Wilkinson [272] in 1963. In this book, an effective condition number
is used to explore the stability of numerical PDE. The effective condition number
is a sharper estimation of stability than the traditional condition number; hence
it is more advantageous. In fact, the effective condition number was first studied
by Rice [225] in 1981; however, it has largely escaped notice of the linear algebra
community (see [14]) In this book, a systematic stability analysis is explored for

numerical PDE, based on the effective condition number.

The first edition of Effective Condition Number for Numerical Partial Differential
Equations was published by Science Press, Beijing, 2013, and then by Alpha Science
International Ltd, UK, 2014 [177]. In this second edition, some errors discovered
after the publication of the previous edition have been corrected. In addition, new
progresses are reported as Chapters 6, 10 and 14. The length of the book increases
by about 30%.

The three new chapters are briefly described as follows. In Chapter 6, a sys-
tematic stability analysis for the MFS is established to demonstrate the merits of
the effective condition number, and to fill the gap between computation and theory.
The MFS is a new trend of numerical PDE; an international conference series was
initiated in 2007. The severe instability of the MFS is a crucial issue, but the opti-
mal convergence can be achieved (see Li [149]). In this chapter, a new approach is
proposed to derive the sharp asymptotes of Cond and Cond eff. Since the condition
number of the MFS is large and even huge, the effective condition number is a much
better estimate of numerical stability.

In Chapter 10, the singularity in boundary layers, which is more important than
the boundary singularity discussed in Chapter 9, is analyzed. The effective condition

number is applied to boundary layers by the FDM using different local refinements.



iv Preface to the Second Edition

In Chapter 14, for the generalized Sylvester equation resulting from the linear control

systems, the effective condition number is also employed.

Li Zi-Cai
Huang Hung-Tsai
Wei Yi-min
Cheng Alexander H.-D.
October 2015



Preface

For numerical methods, the stability is a crucial issue in the sense that the unstable
numerical methods are useless in practical applications. The Lax’s principle [90]
for initial problems states that under the consistent condition, the convergence and
the stability are equivalent to each other. When the truncation errors are derived,
which are not very difficult, the errors of the numerical solutions can be obtained.
However, the final numerical solutions also include rounding errors, which are related
to stability. Since for the given algorithms of partial differential equations (PDE),
the stability proof is often difficult and challenging, error analysis provides an easier
pathway to answer the stability question.

Let us consider the finite element method (FEM) for elliptic boundary value
problems. The uniformly V}, elliptic inequality is important for a priori error esti-
mates [47], and it also implies stability, because the solutions of elliptic problems
are not very sensitive to the perturbation of the data involved. The linear alge-
braic equations obtained from the FEM can be solved by the direct methods such
as Gaussian elimination, or iterative methods such as the conjugate gradient meth-
ods, or the multigrid methods. Since all computations are completed in computer,
the rounding errors are inevitable. Since the double precision has only 16 signifi-
cant decimal digits, the final numerical solutions must have the extra errors from
rounding errors. Even when certain software, such as the computer algebra software
Mathematica, is used with more working digits, it is also finite. The more working
digits are used, the more CPU time and the more computer storage are needed.
Hence, the perturbation errors, such as rounding errors, are important to numerical
methods for PDE.

Consider the overdetermined linear algebraic equations resulting from numerical
PDE,

Fz =b, (0.0.1)

where F ¢ R™*",m > n, and £ € R™ and b € R™ are the unknown and the known
vectors, respectively. The traditional condition number in the 2-norm is defined by

Cond = 22 (0.0.2)

Omin

where o,.x and o, are the maximal and the minimal singular values, respectively.
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The new effective condition number in this book is defined by

Cond _eff = el (0.0.3)

Umin“‘r”7

where ||z|| is the 2-norm. When there exist the perturbation of b and F', the practical
computation for (0.0.1) is carried out by

F(x + Az) = b+ Ab, (0.0.4)
(F + AF)(z + Az) = b+ Ab, (0.0.5)

where AF € R™*™ (m > n), Az € R™ and Ab € R™. Suppose that AF is small
so that rank(F') = rank(F + AF) = n. For (0.0.4) (i.e., AF = 0), there exist the
bounds of relative errors,

|Ab]|  [|Ax| |Ab|

|[Az||
< Cond x ———, < Cond_eff x ———. 0.0.6
[ ol =l 1]l (0:06)

Equations (0.0.6) indicate the errors from the perturbation, e.g., from the rounding

errors. More specifically, the relative errors of the solution & may be enlarged from
the rounding errors by a factor of Cond, and Cond has often been used to provide
a stability analysis of numerical methods (see Wilkinson [272]). In fact, since the
upper bound Cond in (0.0.6) is the worst case, it rarely happens in most PDE
problems. The Cond_eff in (0.0.3) is smaller, or even much smaller than the Cond
in (0.0.2). Then the error bound of x can be improved by Cond_eff and shown in
(0.0.6). Such a conclusion has been proved by the analysis and computation in this
entire book. Since the algorithms of (0.0.3) are so simple, easy and straightforward
in computation, the Cond_eff is strongly recommended, to replace the Cond. This
is one objective of this book.

The idea of effective condition number was first studied in Rice [225] and Chan
and Foulser [29], and the formula (0.0.3) of Cond_eff was first used in Christiansen
and Saranen [44]. Only a few papers [29, 43, 44, 63| follow this trend for stability
analysis. Recently, we have carried out a systematic study on effective condition
number of various numerical methods for PDE and the boundary integral equation
(BIE). Interestingly, the Cond_eff is significantly smaller than the Cond for numerical
methods of PDE, but only fairly smaller than the Cond for numerical methods of
BIE [116]. Comparing (0.0.3) with (0.0.2), the minimal singular value om;in is crucial
for both Cond_eff and Cond, but the maximal singular value onyax is necessary only
to Cond. Hence when o,ay is large, the Cond is large, but the Cond_eff may remain
small. This happens for the finite element method (FEM), the finite difference
method (FDM), the Trefftz method (TM) and the spectral method (SM) for elliptic
boundary value problems. In particular, when the maximal boundary length h
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of grids and elements is small in FDM and FEM, the traditional condition number
Cond is large (or even huge for local refinements of partitions). However, the effective
condition number is small, to display a good stability of numerical methods. This is
particularly important to the local refinements used in FDM and FEM for singularity
problems in Li [144], explored in Chapters 9—11.

The previous study [29, 43, 225] for effective condition number was active until
Banoczi et al. [14] in 1998, where a number of numerical examples of linear algebraic
equations display insignificance of effective condition number. In fact, the Cond_eff
is significant for numerical PDE, not for linear algebraic equations [164]. For the
perturbations in (0.0.5), from Section 1.8 there exists the bound,

|Az|| _ Cond.eff |1+ V5 |AF||  ||Ab|

Y 2 CondX—HFH +—||b|| ; (0.0.7)

where § = | FT||||AF|| < 1, and F is the pseudo-inverse matrix of F. In (0.0.7), the
condition number is defined by Cond = || F'|||| F||, and the effective condition number

|Ab]]
1]

of solution methods, such as Gaussian elimination

by Cond_eff = ||FTH||||—2% For linear algebraic equations, the rounding errors
|AF]

[1El
method, so that the condition number plays a dominant role in (0.0.7). However, for

|Ab]]
Bl

are smaller than the errors

numerical PDE, the discretization and the truncation errors, , are lager than

%, so that the effective condition number plays a dominant role in (0.0.7).

Here, let us mention the most important references of condition number. The
definition of the traditional condition number was given in Wilkinson [273], and then
used in many books and papers, see Atkinson [3], Atkinson and Han [5], Christiansen
[41], Cucker et al. [49], Geurts [77], Golub and van Loan [80], Laub [135], Parlett
[218], Quarteroni and Valli [222], and Schwarz [230]. The condition number for
eigenvalues was reported in Parlett [218] and Frayssé and Toumazou [74], and more
discussions on condition number were given in Gulliksson and Wedin [87], Elsner et
al. [67], Rice [224] and Rohn [226].

This book is a summary of our recent study of effective condition numbers, and
the most significant results are selected from more than thirty papers, published
in international journals in mathematics and engineering. There are a number of
characteristics of this book. The effective condition number is a new criterion for
numerical stability of numerical PDE, and this book covers the newest discoverers
on this subject. The first characteristic is its novelty. Since the analysis of effective

condition number involves two disciplines: linear algebra and partial differential
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the boundary singularities, the Cond_eff is much smaller than the Cond = O(hr_n?n .

Chapter 10: Singularly Perturbed Differential Equations by the Up-
wind Difference Scheme. The singularity in boundary layers in this chapter is
more popular and important than the boundary singularity in Chapter 9. Different
local refinements are employed, and the effective condition number is also advanta-
geous over the condition number.

Chapter 11: Finite Element Method Using Local Mesh Refinements.
For corner singularity of general PDE, the local mesh refinements are a must for
FEM. The Cond_eff is independent of h,in, and significantly smaller than the Cond.

Chapter 12: Hermite FEM for Biharmonic Equations. Effective condi-
tion number is applied to biharmonic equations by Hermite FEM, to show Cond_eff =
O(1) for homogenous boundary conditions. In contrast, Cond = O(h™%).

Chapter 13: Truncated SVD and Tikhonov Regularization. The ill-
conditioning of the truncated singular value decomposition (TSVD) and the Tikhonov
regularization (TR) is studied by Cond and Cond_eff. The new computational for-
mulas of Cond and Cond_eff are explored, and error bounds are derived. When
the minimal singular value o, is infinitesimal, there exists a severe subtractive
cancelation. This is the other stability. The Cond can be regarded as the global
stability: Cond_eff plus the subtractive cancelation. This chapter provides a new
stability analysis on the TSVD and the TR for numerical PDE.

Chapter 14: Small Sample Statistical Condition Estimation for the
Generalized Sylvester Equation. In this chapter, the effective condition number
has been applied to the generalized Sylvester equation resulting from the linear
control systems. The effective condition number can be much smaller than the
orthodox condition number. Based on the effective condition, the sharp perturbation
bounds for the generalized Sylvester equation can be obtained.

Various problems by different numerical methods for different applications demon-
strate the outstanding advantages of the effective condition number over the tradi-

tional condition number.

Li Zi-Cai
Huang Hung-Tsai
Wei Yi-min
Cheng Alexander H.-D.
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