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Preface

There is a growing awareness throughout society of the inexorable rise of the
computer. For engineers, the computer is rapidly approaching a position of
dominance with respect to their technical activities. Thus, to be competitive,
engineers must be capable of communicating fluently with the computer. For
structural engineers, this requires an understanding of matrix structural analysis.
Before studying matrix structural analysis as presented in this book, it would be
desirable for students to have taken an introductory structural analysis course
taught from either a matrix or a classical point of view. (Some previous study of
matrix algebra would, of course, also be useful.) For course use, this book is
written at a level suitable for third- or fourth-year undergraduate students or
beginning graduate students. Although a classical structural analysis background
is unnecessary to the understanding of the subjects presented, appropriate
comparisons to classical methods are occasionally made for the benefit of students
who may have such a background.

In this book, the developments of concepts are based firmly on physical
reasoning. Readers are repeatedly guided to an appreciation for the physical
meaning that underlies the matrix and coding operations presented. Even the
matrix algebra review is offered in the context of a very idealized simple
structural system rather than as a sterile set of mathematical rules.

With regard to the arrangement of subject matter, the concepts of equilib-

xi



Xii PREFACE

rium and compatibility are introduced first, allowing for the solution of statically
determinate structures only. The range of problems that can be solved is then
extended by developing stiffness and flexibility relationships. The displacement
method of analysis is emphasized, with ultimate development of the direct
stiffness method for automatic computation. The force method of analysis is also
presented for use in an automatic computation environment. Special topics such
as initial strain loadings, members of variable cross section, and shear deformatior
effects are relegated to a separate chapter so that the development of major ideas
is uninterrupted. Thus an overall view of the displacement method is presented
before adjustments for important special conditions are attempted. In line with
this approach, subjects are discussed in a two-dimensional context throughout the
book, with extension to three dimensions being reserved as a topic for the final
chapter. Subjects related to the main theme that receive particularly effective
treatment in this book are the often neglected teric of symmetry and the equally
important topic of solutions of large sets of simultaneous equations.

Throughout the book, each discussion proceeds from the specific to the
general. Most concepts are presented first in the context of a specific structural
example and then generalized. Furthermore, the examples used are kept as simple
as possible while still retaining the capacity to demonstrate the concept under
discussion. These examples are reused throughout the book so that subtle
differences in solution techniques are not obscured by gross differences in
structures.

This book makes rather extensive use of the computer program SMIS3, which
is an educational program, not a production program. Although users are relieved
of much of the tedium of structural analysis calculations, they are forced to
provide instructions to the computer regarding the major steps in the analysis they
wish to accomplish. Thus the computer program enhances rather than obscures
the readers’ understanding of the analysis process. One especially useful feature of
the SMIS3 program is that subroutines for certain of the important analysis steps
have been written in such a way that their replacement is very convenient. Thus
as the development of the subject proceeds, readers can write their own computer
subroutines for particular analysis steps. The readers can thus gain the experience
of transforming a structural analysis concept into FORTRAN logic without being
burdened with input/output and other programming details that would otherwise
consume so much of their time and effort. Proceeding in this fashion, the readers
will not only learn the analysis concepts but will also have the opportunity to
implement them on the computer. In the end, they will have written subroutines
typical of each important step of the analysis, which should give them a
reasonable insight into the functioning of a structural analysis program. Although
the purpose of using the SMIS3 program is to promote a thorough understanding
of matrix-computer analysis of structures, readers are also encouraged in the book
to retain a healthy skepticism as to the correctness of computer results. Hand
checks on computer-generated results are frequently suggested.

Because the major steps in most examples are displayed in detail indepen-
dently of SMIS3, this book can also be effectively used with any other appropriate
structural analysis program. It can also be used in case no computer program is
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available. However, it is certainly desirable for readers to be able to interact with
the computer during the study of this subject if at all possible. The SMISS program
is available at nominal reproduction, handling, and shipping cost from the
author.
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Chapter 1
Concepts of Structural Analysis

1.1 INTRODUCTION

Structures can be classified in a variety of ways. The casual observer might first
consider classifying structures according to their respective functions: buildings,
bridges, ships, aircraft, towers, and so on. This basis for structural classification is
in fact fundamental; all structures have some functional reasons for existence. It is
the need to fulfill some function that prompts the designer to give life to a
structure. Furthermore, it is the need for a safe, serviceable, feasible, and
aesthetically pleasing fulfillment of a function that dictates the form, material,
and manner of loading of a structure.

Once the form and material have been determined, a structure may be
further classified according to either its form (e.g., an arch, truss, or suspension
structure) or the material out of which it is constructed (e.g., steel, concrete, or
timber). The form and material of a structure in turn dictate its behavior, which
in turn dictates the character of the analytical model. Figure 1.1 illustrates
schematically the relationships among the function a structure is to fulfill, the
form and material of and loading on the structure, the behavior of the structure,
and the analytical model of the structure.

At this point we need to discuss some of the aspects of structural behavior
indicated in Fig. 1.1 and to explain their respective relationships to the form and
material of the structure. A structure is linear if its response to loading, say

1
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Fig. 1.1 Relationship between the function of a structure and its analytical model.

displacement at a point, is directly proportional to the magnitude of the applied
load. If this proportionality does not exist, the structure is said to be nonlinear.
Structural nonlinearities are of two types: (1) material nonlinearities that arise
when stress is not proportional to strain, and (2) geometric nonlinearities that arise
when the configuration of the structure under load is markedly changed from the
unloaded configuration. (The presence of cables in a structure often leads to
geometric nonlinearity because displacements can occur owing to a change in
cable sag, which can be shown to be nonlinearly related to the force in the cable.)
Materials, and therefore structures built from them, may be classified as elastic,
plastic, or viscoelastic. Elastic materials rebound to their initial configuration
when the load is removed, whereas plastic materials retain a permanent set. The
deformations of viscoelastic materials depend on time and therefore load history,
whereas the deformations of elastic and plastic materials do not. A structural
system is unconservative or conservative depending on whether or not energy is
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lost from the system during a cycle of loading and unloading. Energy is generally
lost if a system does not recover its initial shape after unloading owing either to
plastic behavior of the material or to friction forces within or between parts of the
structure.

All these behavioral aspects of the structure will have a significant influence
on the nature of the analysis used in studying the structure. In addition, in
developing the analytical model it will be necessary to consider whether the
structural material is homogeneous or nonhomogeneous and whether it is
isotropic, orthotropic, or anisotropic. (The physical properties of homogeneous
materials are the same at each point; those of nonhomogeneous materials are not.
The physical properties of isotropic materials are the same in all directions at a
point; those of anisotropic materials are not. An orthotropic material is a special
anisotropic material whose properties are different in three principal directions
but whose properties in all other directions are dependent on those in the
principal directions.) Other aspects of the structure, although important design
considerations, will not usually have a significant impact on the analysis
technique. These include brittleness, ductility, flammability, texture, color,
hardness, and machinability.

Finally, the nature of the loading, which is dependent on the function of the
structure, will also influence the analysis. The only truly static loading on a
structure is the dead, or gravity, loading. However, if other loadings are applied
gradually enough, they are called quasi-static loadings and may be considered
static for analysis purposes. Whether or not the rate of loading is gradual enough
depends on whether or not the time it takes to apply the load is longer than the
fundamental period of vibration of the structure being analyzed. Loads usually
need be treated as dynamic only if they are periodic in nature or if they are
applied very suddenly. Even then, sometimes an “impact factor” is applied to an
analysis with a static-loading result to account for the effect of a suddenly applied
load. Loads can also be categorized as either external applied forces or internal
initial distortions. Thermal loading is an example of an internal initial distortion
(or initial strain) loading. (It will be shown in Chap. 2 that initial external
displacements can also be considered to be initial internal distortions in support
members.)

Unfortunately, the picture of structural behavior is generally not so clear as
that just painted. That is, materials are not either “linear” or “nonlinear” and
“elastic”” or “plastic”; instead, their behavior depends on circumstances such as
environment and rate of loading. The picture is further clouded in that the type of
behavior that must be considered in an analysis may depend on the type of
response being investigated. For example, a simpler analytical model may suffice
to obtain static displacement and stress results than that which would be required
for vibration or buckling results.

To clarify this picture for purposes of a rational presentation of matrix
analysis of structures, we will make simplifying assumptions as to the nature of the
behavior of structures. Thus we will consider only the displacement and stress
response due to static loading of linear, elastic, conservative structures. We will
further restrict our attention to discrete-membered structures (rigid- and pin-
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jointed frameworks) as opposed to continuous structures. However, it is important
to recognize at the outset that the concepts that will be presented can be extended
to the solution of many other classes of structural problems, including those
involving dynamic response, material and geometric nonlinearities, inelasticity,
instability, and continuous systems. Furthermore, the same concepts can be
applied to problems from other areas of engineering, such as geotechnics,
hydraulics, and heat transfer, as well as to problems outside of engineering
altogether. Finally, to conserve space and time, most of our studies will deal with
planar structures subjected to planar loadings in the plane of the structure. This
approach will retain enough generality that the resulting analysis methods can be
readily extended to three-dimensional applications.

For the sake of brevity, we will refer to our subject as “matrix structural
analysis.” A major feature that will be evident in matrix structural analysis is an
emphasis on a systematic approach to the statement of the problem. Matrix
notation turns out to be convenient to use in this connection because of its
shorthand characteristics. Furthermore, the systematic approach together with
matrix notation makes it particularly convenient to translate the statement of the
problem to a computer language. Our effort will therefore be to develop matrix
structural analysis as a tool for automatic computation of structural response to

load.

1.2 SOLUTION METHODS

As mentioned before, the aspects of structural response to static load with which
we will be mainly concerned are the internal force (and therefore stress)
distribution in the structure and the displacements that the structure undergoes.
These force and displacement responses constitute two infinite sets of unknowns,
some portions of which must be determined in order to design the structure.
Questions naturally arise as to whether we should attempt to determine displace-
ment or force unknowns first and also whether some finite-sized subsets of each of
these sets exist that are in some way fundamental. It will be shown that the
consideration of either displacements or forces as the primary unknowns can lead
to an effective solution method. It will be further shown that it is possible to
identify a basic set of forces associated with each member (Ref. 1.1), in that not
only are these forces independent of one another, but also all other forces in that
member are directly dependent on this set. Thus this set of forces constitutes the
minimum set that is capable of completely defining the stressed state of the
member. Similarly, it will be shown that there is a corresponding basic set of
displacements associated with each member (Ref. 1.1), in that not only are these
displacements independent of one another, but also they are just sufficient to
completely define the distorted shape of the member.

1.2.1 Force Method of Analysis

If internal forces are selected as the primary unknowns in a structure, the analysis
method is referred to as the force method. It is convenient to consider the force
method in the context of a pin-jointed truss structure.



