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Preface

For most students, the first and often only course in college mathematics
is calculus. It is true that calculus is the single most important field of
mathematics, whose emergence in the seventeenth century signaled the
birth of modern mathematics and was the key to the successful applications
of mathematics in the sciences and engineering.

But calculus (or analysis) is also very technical. It takes a lot of work
even to introduce its fundamental notions like continuity and the derivative
(after all, it took two centuries just to develop the proper definition of these
notions). To get a feeling for the power of its methods, say by describing
one of its important applications in detail, takes years of study.

If you want to become a mathematician, computer scientist, or engineer,
this investment is necessary. But if your goal is to develop a feeling for what
mathematics is all about, where mathematical methods can be helpful, and
what kinds of questions do mathematicians work on, you may want to look
for the answer in some other fields of mathematics.

There are many success stories of applied mathematics outside calculus.
A recent hot topic is mathematical cryptography, which is based on number
theory (the study of the positive integers 1, 2, 3, ...), and is widely applied,
for example, in computer security and electronic banking. Other important
areas in applied mathematics are linear programming, coding theory, and
the theory of computing. The mathematical content in these apphg@tlons
is collectively called discrete mathematics. (The word “discrete” 1%&@ in
the sense of “separated from each other,” the opposite of “continuouss’ it ;
also often used in the more restrictive sense of “finite.” The more eve ‘
version of this word, meaning “circumspect,” is spelled “discreet.”)




Preface

The aim of this book is not to cover “discrete mathematics” in depth
(it should be clear from the description above that such a task would be
ill-defined and impossible anyway). Rather, we discuss a number of selected
results and methods, mostly from the areas of combinatorics and graph the-
ory, with a little elementary number theory, probability, and combinatorial
geometry.

It is important to realize that there is no mathematics without proofs.
Merely stating the facts, without saying something about why these facts
are valid, would be terribly far from the spirit of mathematics and would
make it impossible to give any idea about how it works. Thus, wherever
possible, we will give the proofs of the theorems we state. Sometimes this
is not possible: quite simple, elementary facts can be extremely difficult to
prove, and some such proofs may take advanced courses to go through. In
these cases, we will at least state that the proof is highly technical and goes
beyond the scope of this book.

Another important ingredient of mathematics is problem solving. You
won’t be able to learn any mathematics without dirtying your hands and
trying out the ideas you learn about in the solution of problems. To some,
this may sound frightening, but in fact, most people pursue this type of
activity almost every day: Everybody who plays a game of chess or solves
a puzzle is solving discrete mathematical problems. The reader is strongly
advised to answer the questions posed in the text and to go through the
problems at the end of each chapter of this book. Treat it as puzzle solving,
and if you find that some idea that you came up with in the solution plays
some role later, be satisfied that you are beginning to get the essence of
how mathematics develops.

We hope that we can illustrate that mathematics is a building, where
results are built on earlier results, often going back to the great Greek
mathematicians: that mathematics is alive, with more new ideas and more
pressing unsolved problems than ever: and that mathematics is also an art,
where the beauty of ideas and methods is as important as their difficulty
or applicability.

Léaszl6 Lovasz Jozsef Pelikan Katalin Vesztergombi
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1
Let’s Count!

1.1 A Party

Alice invites six guests to her birthday party: Bob, Carl, Diane, Eve, Frank,
and George. When they arrive, they shake hands with each other (strange
European custom). This group is strange anyway, because one of them asks,
“How many handshakes does this mean?”

“] shook 6 hands altogether,” says Bob, “and I guess, so did everybody
else.”

“Since there are seven of us, this should mean 7 - 6 = 42 handshakes,”
ventures Carl.

“This seems too many” says Diane. “The same logic gives 2 handshakes
if two persons meet, which is clearly wrong.”

“This is exactly the point: Every handshake was counted twice. We have
to divide 42 by 2 to get the right number: 21,” with which Eve settles the
issue.

When they go to the table, they have a difference of opinion about who -
should sit where. To resolve this issue, Alice suggests, “Let’s change the
seating every half hour, until we get every seating.”

“But you stay at the head of the table,” says George, “since it is your
birthday.”

How long is this party going to last? How many different seatings are
there (with Alice’s place fixed)?

Let us fill the seats one by one, starting with the chair on Alice’s right.
Here we can put any of the 6 guests. Now look at the second chair. If Bob
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sits in the first chair. we can put any of the remaining 5 guests in the second
chair: if Carl sits in the first chair. we again hiave 5 choices for the second
chair. etc. Each of the six choices for the first chair gives us five choices
for the second chair. so the munber of wavs to fill the first two chairs is
54+5+5+5+5+5=0-5=30. Similarly. no matter how we fill the first
two chairs. we have 4 choices for the thivd chair. which gives 6 -5 - 4 wavs
to fill the first three chairs. Proceeding similarty. we find that the manber
of ways to seat the guests is 6-5-1-3.2.1 = 720.

If they change seats every half hour. it will take 360 howrs. that is. 15
days. to go through all the scating arrangements. Quite a party. at least as
far as the duration goes!

1.1.1 How many ways can these people he seated at the table if Alice. too. can
sit anywherc?

After the cake. the crowd wants to dance (boys with girls. remember.
this is a conservative Ewopean party). How many possible pairs can he
formed?

OK. this is casy: there are 3 girls. and cach can choose one of 4 boyvs.
this makes 3 - 1 = 12 possible paips.

After ten days have passed. our friends really need some new ideas to
keep the party going. Frank has one: “Let’s pool our resources and win the
lottery! All we have 10 do is to buy cnough tickets so that no matter what
they draw. we will have a ticket with the winning munbers. How manyv
tickets do we necd for this?”

(In the lottery they are talking about. 5 nunbers are selected ont of 90.)

“This is like the seating.” savs George. “Suppose we fill ont the tickets so
that Alice marks a munber. then she passes the ticket to Bobl. who marks
a number and passes it to Carl. and so on. Alice has 90 choices. and no
matter what she chooses. Bob has 89 choices, so there are 90 - 89 choices
for the first two numbers. and going on similarly. we get 90 -89 - 88 . 87 - 86
possible choices for the five numbers.”

"Actually. T think this is more like the handshake question.” savs Alice.
“If we fill out the tickets the way vou suggested. we get the same ticket
more then once. For example. there will be a ticket where [ mark 7 and
Bob marks 23, and another one where I mark 23 and Bob marks 7.7

Carl jumps up: ~Well. let’s imagine a ticket. sav. with numbers
7.23.31, 34, and 55. How many ways do we get it? Alice could have marked
any of them: no matter which one it was that she marked. Bob could have
marked any of the remaining four. Now this is really like the seating probh-
lem. We get every ticket 5-4-3-2-1 times.”

“So.” concludes Diane. “if we fill out the tickets the way George proposed.
then among the 90 - 89 - 88 - 87 - 86 tickets we got. every H-tuple occurs not
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only once. but 5-4-3-2-1 times. So the number of different tickets is only

90 -89 - 88 - 87 - 86
5-4-3-2-1

We only need to buy this number of tickets.”

Somebody with a good pocket calculator computed this value in a twin-
kling: it was 43.949,268. So they had to decide (remember, this happens in
a poor European country) that they didn’t have enough money to buy so
many tickets. (Besides, they would win much less. And to fill out so many
tickets would spoil the party!)

So they decide to play cards instead. Alice. Bob, Carl and Diane play
bridge. Looking at his cards. Carl says. “I think I had the same hand last
time.”

“That is very unlikely” says Diane.

How unlikely is it? In other words, how many different hands can you
have in bridge? (The deck has 52 cards, each player gets 13.) We hope
you have noticed that this is essentially the same question as the lottery
problem. Imagine that Carl picks up his cards one by one. The first card
can be any one of the 52 cards: whatever he picked up first, there are 51
possibilities for the second card, so there are 52 - 51 possibilities for the
first two cards. Arguing similarly. we see that there are 52 - 51 - 50- - - 40
possibilities for the 13 cards.

But now every hand has been counted many times. In fact, if Eve comes
to kibitz and looks into Carl's cards after he has arranged them and tries
to guess (we don't know why) the order in which he picked them up, she
could think. “He could have picked np any of the 13 cards first; he could
have picked up any of the remaining 12 cards second: any of the remaining
11 cards third. ... Aha. this is again like the seating: There are 13-12--- 2.1
orders in which he could have picked up his cards.”

But this means that the number of different hands in bridge is

52-51-50---40 .
So the chance that Carl had the same hand twice in a row is one in
635,013.559.600. which is very small indeed.

Finally, the six guests decide to play chess. Alice, who just wants to
watch. sets up three boards.

“How many ways can vou guys be matched with each other?” she won-
ders. “This is clearly the same problem as seating you on six chairs; it does
not matter whether the chairs are around the dinner table or at the three
boards. So the answer is 720 as before.”

“I think you should not count it as a different pairing if two people at
the same board switch places,” says Bob, “and it shouldn’t matter which
pair sits at which board.”
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“Yes, I think we have to agree on what the question really means,” adds
Carl. “If we include in it who plays white on each board, then if a pair
switches places we do get a different matching. But Bob is right that it
doesn’t matter which pair uses which board.”

“What do you mean it does not matter? You sit at the first board, which
is closest to the peanuts, and I sit at the last, which is farthest,” says Diane.

“Let's just stick to Bob's version of the question” suggests Eve. “It is
not hard, actually. It is like with handshakes: Alice’s figure of 720 counts
every pairing several times. We could rearrange the 3 boards in 6 different
ways, without changing the pairing.”

“And each pair may or may not switch sides” adds Frank. “This means
2-2.2 = 8 ways to rearrange people without changing the pairing. So
in fact, therc are 6 - 8 = 48 ways to sit that all mean the same pairing.
The 720 seatings come in groups of 48, and so the number of matchings is
720/48 = 15."

“I think there is another way to get this,” says Alice after a little time.
“Bob is youngest, so let him choose a partner first. He can choose his
partner in 5 ways. Whoever is youngest among the rest can choose his
or her partner in 3 ways, and this settles the pairing. So the number of
pairings is 5 -3 = 15.”

“Well, it is nice to see that we arrived at the same figure by two really
different arguments. At the least, it is reassuring” says Bob, and on this
happy note we leave the party.

- 1.1.2 What is the number of pairings in Carl’s sense (when it matters who sits
on which side of the board, but the boards are all alike), and in Diane’s sense
(when it is the other way around)?

1.1.3 What is the number of pairings (in all the various senses as above) in a
party of 107

1.2 Sets and the Like

We want to formalize assertions like “the problem of counting the number
of hands in bridge is essentially the same as the problem of counting tickets
in the lottery.” The most basic tool in mathematics that helps here is the
notion of a set. Any collection of distinct objects, called elements, is a set.
The deck of cards is a set, whose elements are the cards. The participants
in the party form a set, whose elements are Alice, Bob, Carl, Diane, Eve,
Frank, and George (let us denote this set by P). Every lottery ticket of the
type mentioned above contains a set of 5 numbers.

For mathematics, various sets of numbers are especially important: the
set of real numbers, denoted by R; the set of rational numbers, denoted by
@Q; the set of integers, denote by Z; the set of non-negative integers, denoted



