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Foreword

The present book is meant as a text for a course on complex analysis at
the advanced undergraduate level, or first-year graduate level. Somewhat
‘more material has been included than can be covered at leisure in one term,
to give opportunities for the instructor to exercise his taste, and lead the:
course in whatever direction strikes his fancy at the time. A large number of
routine exercises are included for the more standard portions, and a few
harder exercises of striking theoretical interest are also included, but may be
omitted in courses addressed to less advanced students. ‘

In some sense, I think the classical German prewar texts were the best
(Hurwitz-Courant, Knopp, Bieberbach, etc.) and I would recommend to
anyone -to look through them. More recent texts have emphasized connec-
tions with real analysis, which is important, but at the cost of exhibiting
succinctly and clearly what is peculiar about complex analysis: the power
series expansion, the uniqueness of analytic continuation, and the calculus of
residues. The systematic elementary development of formal and convergent
power series was standard fare in the German texts, but only Cartan, in the
more recent books, includes this material, which I think is quite essential, e.g.
for differential equations. I have written a short text, exhibiting these features,
making it applicable to a wide variety of tastes. :

The book essentia]ly decomposes in two parts. _

The first part, Chapters I through VIII, includes the basic properties of

" analytic functions, essentially what cannot be left out of, say, a one-semester
course. o ,

I have no fixed idea about the manner in which Cauchy’s theorem is to
be treated. In less advanced classes, or if time is lacking, the usual hand
waving about simple closed curves and interiors is not entirely inappropriate.
Perhaps better would be to state precisely the homological version and omit
the formal proof. For those who want a more thorough understanding, I
include the relevant material.

Artin originally had the idea of basing the homology needed for complex
variables on the winding number. I have included his proof for Cauchy’s
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vi’ FOREWORD

theorem, extracting, however, a purely topological lemma of independent
interest, not made explicit in Artin’s original Notre Dame notes (cf. collected
works) or in Ahlfors’ book closely following Artin. I have also included the
more recent proof by Dixon, which uses the winding number, but replaces the
topological lemma by greater use of elementary properties of analytic func-
tions which can be derived directly from the local theorem, The two aspects,
homotopy and homology, enter both in an essential fashion for different
applications of analytlc functions, and neither is slighted at the expense of the
other.

Most expositions usually include some of the global geometric properties

of analytic maps at an early stage. I chose to make the preliminaries on
complex functions as short as.possible to get quickly into the analytic part of
complex function theory: power series expansions and Cauchy’s theorem. The
advantages of doing this, reaching the heart of the subject rapidly, are
obvious. The cost is that certain elementary global geometric considerations .
are thus omitted from Chapter I, for instance, to reappear later in connection
with analytic isomorphisms (Conformal mappings, Chapter. VII) and poten-
_ tial theory (Harmonic functions, Chapter VIII). I think it is best for the
coherence of the book to have covered in one sweep the basic analytic
material before dealing with these more geometric global topics. Since the
“proof of the general Riemann mapping theorem is somewhat more difficult
than the study of the specific cases consndered in Chapter VII, it has been
postponed to the second part.

This second part of the book, Chapters IX through XIV,. deals with
further assorted analytic aspects of functions in many directions, which may -
lead to many other branches of analysis. I have emphasized the possibility of
defining analytic functions by an integral involving a parameter and differen-
tiating under the integral sign. Some classical functions, of Bessel and
Whittaker type, are given to work out as exercises, but the gamma function is
worked out in detail in the text, as a prototype. The chapters in' this part are
essentially logically independent and can_be covered in any order, or omitted at
will,

_ In particular, the chapter on analytic continuation, including the Schwarz
reflection principle, and/or the proof of the Riemann mapping theorem
could be done right after Chapter VII, and still achieve great coherence.

As most of this part is somewhat harder than the first part, it can easily
be omitted from a course addressed to undergraduates. In the same. spirit,

some of the harder exercises in the first part have been starred, to maké thelr
omission easy.

New Haven, Connecticut ’ S.L.
~ October 1976,



Prerequisites

We assume that the reader has had two years of calculus, and has some
acquaintance with epsilon—delta techniques. For his convenience, we have
recalled all the necessary lemmas we need for continuous functions on
compact sets in the plane. ’

We use what is now standard terminology. A function

' f:S—>T
is called injective if x # y in § implies f(x) # f(»). It is called surjective if
for every z in T there exists x € S such that f(x) = z. If f is surjective, then
we also say that f maps S onto 7. If f is both injective and surjective then we
say that f is bijective. -

Given two functions f, g defined on a set of real numbers containing
arbitrarily large numbers, and such that g(x) > 0, we write

fxg or f(x) < g(x) for x — o

to mean that there exists a number C > 0 such that for all x sufficiently
large, we have
|f(x) < Cg(x).

Similarly, if the functions are defined-for x near 0, we use the same symbol «
for x — 0 to mean that there

|f(x)] < Cg(x)
for all x sufficiently small (there exists § > 0 such that if x| < § then
1 f(x)] € Cg(x)). Often this relation is also expressed by writing

f(x) = 0(g(x)).

which is read: f(x) is big oh of g(x), for x — oo or x — 0 as the case may
be. .
We use ]a, b[ to denote the open interval of numbers

a<x<b.
Similarly, a4, b[ denotes the half-open interval, etc.

vii
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I Complex Numbers
and Functions

One of the advantages of dealing with the real numbers instead of the
rational numbers is that certain equations which do not have any solutions in
the rational numbers have a solution in real numbers. For instance, x? = 2 is
such an equation. However, we also know some equations having no solution
in real numbers, for instance x? = — 1, or x> = —2. We define a new kind of
number where such equations have solutions. The new kind of numbers will
be called complex numbers. :

§1. DEFINITION

The complex numbers are a set of objects which can be added and
multiplied, the sum and product of two complex numbers being also a
complex number, and satisfy the following conditions.

1. Every real number is a complex number, and if a, 8 are real numbers,
then their sum and product as complex numbers are the same as their
sum and product as real numbers.

2. There is a complex number denoted by i such that i? = —1,

3. Every complex number can be .written uniquely in the form a + bi where
a, b are real numbers.

4. The ordinary laws of arithmetic concerning addition and multiplication
are satisfied. We list these laws:
If a, B, ¥ are complex numbers, then (af)y = a(By), and
(a+B)+y=a+(B+7) ‘
We have a(B + v) = a§ + ay, and (B + y)a = Ba + ya.
We have a8 = Ba,and a + B8 = 8 + a.
If 1 is the real number one, then la = a.
If-0 is the real number zero, then Oa = 0.
We have a + (—1)a = 0.
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s

We shall now draw consequences of these properties. With each complex
number a@ + bi, we associate the point (a, b) in the plane. Let a = a, + a,i
and B = b, + b,i be two complex numbers. Then

a+ B=a + b + (a,+ by)i.

Hence addition of éomplex numbers is carried out “componentwise”. For
example, 2 + 3) + (-1 + 5)) =1 + 8i.

L e e R 9 athi=(ab)

TR — q

R e

Figure 1

In multiplying complex nhmbers, we use the rule i> = —1 to simplify a
product and to put it in the form a + bi. For instance, let & = 2 + 3/ and
B =1—1i Then

aB = (2 +3i)(1 —i)=2(1 - i) +3i(1 =)
' =2-2i+3i -3

=2+i-3(-1)
=243+
=540

Let @ = a + bi be a complex number. We define a to be a — bi. Thus if
a =2+ 3i, then @ = 2 — 3/. The complex number & is called the conjugate
of . We see at once that

aa = a* + b2

With the vector interpretation of complex numbers, we see that ad is the
square of the distance of the point (a, b) from the origin.

We now have one more important property of complex numbers, which
will allow us to divide by complex numbers other than 0.



{1, §1} . DEFINITION 5

If « = a + bi is a complex number # 0, and if we let

a
a? + b?

then aA = Aa = 1.
The proof of this property is an immediate consequence of the law of
multiplication of complex numbers, because

a a __aax 1

A+ b A+
The number A above is called the inverse of a, and is denoted by a~! or 1/a.
If a, B are complex numbers, we often write 8/« instead of a =!8 (or Ba™"),
just as we did with real numbers. We see that we can divide by complex

numbers # 0.

Example. To find the inverse of (1 + i) we note that the conjugate of
l+iisl —1and that (1 + i)(1 — i) = 2. Hence

1—i

=
!
!

Theorem 1.1 Let a, 8 be complex numbers. Then

(1+ 1)—

EE=&E, a+B=&+E, a=aq.

Proof. The proofs follow immediately from the definitions of addition,
multiplication, and the complex conjugate. We leave them as exercises
(Exercises 3 and 4).

Let @ = a + bi be a complex number, where a, b are real. We shall call a
the real part of a, and denote it by Re(a). Thus

a + a = 2a = 2 Re(a).

The real number b is called the imaginary part of a, and denoted by Im(a)
We define the absolute value of a complex number a = a + ia, (where

a,, a, are real) to be
|| =Va} + a3 .

If we think of a as a point in the plane (a,, a,), then |a] is the length of the
line segment from the origin to a. In terms of the absolute value, we can write

- [
al_

|ocf?

provided a # 0. Indeed, we observe that |af* = aa.
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az

aj

Figure 2

If @ = a, + ia,, we note that

|a| = |a

because (—ay)? = a3, 50 Vai + a3 =Vai + (—ay)*.

Theorem 1.2 The absolute value of a complex number satisfies the follow-
ing properties. If a, B are complex numbers, then ' ‘

|aBl = lal | Bl
la+ B| <'la] + | BI.
Proof. We have
JaB[ = aBaB = adpf = |a| B

Taking the square root, we conclude that |a| | B8] = |aB], thus proving the first
assertion. As for the second, we.have .

la + B = (a + B)(a ¥ B)

(a+B)@+B)
= ad +fa +aff +pB
= |a]® + 2 Re(Ba) + | B
because aﬁ = Ba. However, we have

2 Re( 8a) < 2| Ba
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because the real part of a complex number is < its absolute value. Hence
Ja + B < laf? + 2| Ba| + | BP
< laf? +2|B] |a + | BP
= (la| + | B))*
Taking the square root yields the second assertiocn of the theorem.

The inequality
' e+ B| < |af + | B]

is called the triangle inequality. It also applies to a sum of several terms. If
Zy, ..., 2, are complex numbers then we have

lzl + - + an < Izl'.‘+" . Iznl'

Also observe that for any complex number z, we have

| = 2] = |zl.
Proof?
EXERCISES ,
I. Express the following com~lex numbers in the form x + iy, where x, y are real
numbers. :
(@ (=1+3)7! Cb) (1 + X - i)
© +di@R-0n d (-D2-0
© 7+ wiX=w + i) O Qi+ Dai
(8 (VZi)n + 3i) _ Coh) G+ I — 26+ 3)
2. Express the following complex numbers in the form x + iy, where x, y are real
numbers.
N1 1 2+ 1
(a) (l + ’) .(b) m (C) f:——; (d) 3~
1+ : i 2i 1
@ —— O T+ ® 3= O =

3. Let a be a complex number » 0. What is the absolute value of a/& 7 What is & ?

4. Let a, B be two complex numbers. Show that aff = &8 and that
a+ B=a+p.

5. Justify the assertion made in the proof of Theorem 2, that the real part of a
complex number is < its absolute value.
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6. If a = a + ib with a, b real, tl_len"b is called the imaginary part of @ and we. write
b = Im(a). Show that a — a = 2/ Im(a). Show that
Im(a) < |Im(a)| < |a].
7. Find the real and imaginary parts of (I + /)!%.
8. Prove that for any two complex numb?rs z, w we have:
@ Izl < |z = wl + ]
®) Jz| - |wl < |z — w|
© Izl = [wl < Iz + wi '
9. Lete =a + iband z = x + iy. Let ¢ be real > 0. Transform the condition
2~ ol =
into an -equation involving only x, y, a, b and describe in a simple way what
geometric figure is represented by this equation. ‘
10. Describe the set of points z satisfying the following conditions geometrically.

@ |Jz—i+3=5 ®) jlz—i+3l>5

o () Jz-i+3]<5 @ |z+2 <t
(¢ Imz>0 # Imz>0
(8 Rez>0 ) (h) Rez<0

1. Letay,...,a,and by, ..., b, be complex numbers. Assume that a,, . . ., a, are
distinct. Find a polynomlal P (2) of degree at most n — 1 such that P(a)) = b; for
J=1,...,n. Prove that such a polynomial is unique. [Hint: Use the Vander-

monde delermmant ]l

§2. POLAR FORM

Let (x,y) = x + iy be a complex number. We know that any pomt in the

plane can be represented by polar coordinates (r, #). We shall now see how to
- write our complex number in térms of such polar coordinates.
Let 8 be a real number. We define the expression e® to be

e® =cos @ + isiné.

Thus e” is a complex number. _

For example, if § = 7, then e” = —1. Also, e = I, and e"/2 = ;.
Furthermore, e’®*2™ = ¢ for any real 4.

Let x, y be real numbers and x + iy a complex number. Let

r =\/x2 + y2 . }
If (r, §) are the polar coordinates of the point (x, y) in the plane, then

X = rcos# and y = rsin 8.



