Mathematical Logic

An‘Introduction to Model Theory

A.H. Lightstone

Mathematical Logic

An Introduction to Model Theory

A.H. Lightstone

Queen’s University
Kingston, Ontario, Canada

Edited by
H.B. Enderton

University of California
Los Angeles, California

PLENUM PRESS - NEW YORK AND LONDON

Library of Congress Cataloging in Publication Data

Lightstone, A H
Mathematical logic.

(Mathematical concepts and methods in science and engineering; 9)

Bibliography: p. ’

Includes index.

1. Logic, Symbolic and mathematical. 2. Model theory. I. Title. _
QA9.L54 511°.3 77-17838
ISBN 0-306-30894-0

© 1978 Plenum Press, New York
A Division of Plenum Publishir:g Corporation
227 West 17th Street, New York, N.Y. 10011

All rights reserved a

No part of this book may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording, or otherwise, without written permission from the Publisher

Printed in the United States of America

Foreword

Before his death in March, 1976, A. H. Lightstone delivered the manu-
script for this book to Plenum Press. Because he died before the editorial
work on the manuscript was completed, I agreed (in the fall of 1976) to
serve as a surrogate author and to see the project through to completion.

I have changed the manuscript as little as possible, altering certain
passages to correct oversights. But the alterations are minor; this 1s
Lightstone’s book.

H. B. Enderton

vii

Pretace

This is a treatment of the predicate calculus in a form that serves as a
foundation for nonstandard analysis. Classically, the predicates and
variables of the predicate calculus are kept distinct, inasmuch as no
variable is also a predicate; moreover, each predicate 1s assigned an order,
a unique natural number that indicates the length of each tuple to which
the predicate can be prefixed. These restrictions are dropped here, in
order to develop a flexible, expressive language capable of exploiting the
potential of nonstandard analysis.

To assist the reader in grasping the basic 1deas of logic, we begin in
Part I by presenting the propositional calculus and statement systems. This
provides a relatively simple setting in which to grapple with the some-
times foreign ideas of mathematical logic. These 1deas are repeated in
‘Part 11, where the predicate calculus and semantical systems are studied.

Finally, in Part III, we present some applications. There 1s a
substantial discussion of mnonstandard analysis, a treatment of the
Lowenheim—Skolem Theorem, a discussion of axtomatic set theory that
utilizes semantical systems, and an account of complete theories. The
presentation of complete theories includes Vaught’s test, but is mainly
devoted to an exposition of Robinson’s notion of model completeness and
its connection with completeness. Chapter 16 i1s taken from the author’s
The Axiomatic Method: An Introduction to Mathematical Logic,* with
only a few minor changes.

This book contains many ideas due to Abraham Robinson, the
father of nonstandard analysis. The author is also indebted to Prof.
Ernest Heighton for several stimulating conversations and many valuable
suggestions.

A. H. Lightstone
* Prentice-Hall, Englewood Cliffs (1964). |

Contents

Introduction

PART I. STATEMENT SYSTEMS AND PROPOSITIONAL CALCULUS

1. Statement Systems
1.1. Statement Systems

1.2. Language of a Statement System

1.3. Names for Swils .

2. Propositional Calculus

2.1. Well-Formed Formulas.
2.2. Parentheses ,
2.3. Main Connective of Wﬂ’s

2.4. Names for Wfls; Principal Connective of Name

2.5. Valuations .

3. Provable Wifls

3.1. 2> -Interpreters

3.2. True Wfis .

3.3. Proofs and vaable Wﬁs
3.4. Rules of Inference

3.5. Equivalent Wfls

4. Substitution Theorems

4.1. Subwifls, Components, and Wii-Builders .

4.2. Substitution Theorem for Wffs

X1

3 O

11
16
20

26

31
34
37
41
45

49
52

Contents

xi1

5. Duality
5.1. Normal Form : , . . . : : : . 57
5.2. Syntactical Transforms . . : .. . : : 59
5.3. Normal Transforms . . : :] : . : 62
5.4. Duality : . , : . . : : : . 68

6. Deducibility and Completeness
6.1. More Provable Wifs . : : . 75
6.2. Conjunctive Normal Form . : : : . . . 81
6.3. Completeness : . : *. . : . : : 84
6.4. Deducibility : : : . : , 87
6.5. Consistent Sets and Contradlctory Sets : . . : : 94
6.6. Maximal-Consistent Sets : : . : : . : 98
6.7. Strong Completeness Theorem ‘ : . : : : 1G1

PART 1I. SEMANTICAL SYSTEMS AND PREDICATE CALCULUS

7. Semantical Systems

7.1. Relational Systems : : : : . . : . 107
7.2. Semantical Systems . . : : : : . . 109
7.3. Language of a Semantical System . . : . . . 117
7.4. Extensions; Elementary Extensions. . . i : : 122

8. Predicate Calculus

8.1. Well-Formed Formulas. . . : . : : : 129
8.2. Parentheses : : : . . . 133
8.3. Main Connective of Wﬁs : : : . . : 136
8.4. Names for Wfls; Principal Connective of Name : : : 140
8.5. Syntactical Transforms : : : : : : 143
8.6. Interchange and Substitution Transforrns : : . : 145
8.7. Valuations . : : : : : : : : . 149
9. Provable Wils

1. >-Interpreters . . : : . : 153
9.2 True Wfls . : . : : : : . 155
9.3. Proofs and Provable Wffs . . : : , : . 159
9.4. Equivalent WHls : : : : .. 162
9.5. Rules of Inference . . : : : . 165

9.6. A Fact about the Interchange Transform . : : . 169

10. Substitution Theorems

10.1. Subwfls, Components, and Wff-Builders : : , : 173
10.2. Substitution Theorem for Wfls . : : . , , 175

11. Duality

11.1. Normal Form . . : : . : . . . 183
11,2, Normal Transforms . . . : . : . . 185

Contents

11.3. Duality
11.4. Prenex Normal Form

12. Deducibility and Completeness
12.1. Deducibility i
12,2, Consistent Sets and Contradlctory Sets
12.3. Strong Completeness Theorem -«
12.4. Maximal-Consistent Sets
12.5. 3-Complete Sets . .
12.6. Proof of the Strong Completeness Theore*'n :
PART III. APPLICATIONS
13. Nonstandard Analysis
13.1. Extended Natural Number System
13.2. Extended Real Number System .
13.3. Properties of ~
13.4. Paradoxes .
13.5. The Limit Concept . , .
13.6. Continuity; Uniform Continuity .
13.7. Principles of Rermanence .
14. Normal Semantical Systems
14.1. Equality Relations :
14.2. Normal Semantical Systems
14.3. Lowenheim—Skolem Theorem
14.4, Theories .
15. Axiomatic Set Theory
15.1. Introduction .
15.2. Axtom of Extensmnahty :
15.3. Axiom Scheme of Replacement
15.4. Axiom of Power Set .
15.5. Axiom of Sum Set
15.6. Axiom of Infinity :
15.7. Nonstandard Set Theory
15.8. Axiom of Regularity .
15.9. Axiom of Choice
16. Complete Theories
16.1. Vaught’s Test .
16.2. Diagrammatic Sets .
16.3. Simplifying the Concept ()f a Model
16.4. Robinson’s Test
Bibliography
Symbol Index

Subject Index

t'i

191
196

201
209
212
214
218
221

227
235
241
246
248
252
258

263
268
269
272

277
282
285
292
297
300
308
311
312

315
317
321
325

329
334
335

Introduction

A theory of deduction utilizes various ideas of logic that may appear
strange, even foreign, to mathematics students with little background 1n
logic. The main concern of this book is to develop the important theory
of deduction known as the predicate calculus. In an effort to overcome the
strangeness of the logical ideas and methods involved, we shall first
present the theory of deduction based on the connectives — (not) and
v (or). This theory, known as the propositional calculus, characterizes
the conclusions, or consequences, of a given set of assumptions, and so
provides us with the formal side of arguments. The question of the
validity of a given argument of this sort is easy to solve by the truth-table
method, and so 1s really trivial. Therefore, in studying the accompanying
theory of deduction we are able to concentrate on the formal apparatus
and methods of a theory of deduction, without the complications owing
to the subject matter under investigation. In short, the propositional
calculus 1s a convenient device for making clear the nature of a theory of
deduction.

In rough outline, the steps in setting up a theory of deduction are as
follows. First, the propositions (statements) of a language are charac-
terized. This is achieved by actually creating a specific formal language
possessing its own alphabet and rules of grammar; in fact, the sentences
of the formal language are effectively spelled out by suitably chosen rules
of grammar. Finally, the notion of truth within this specialized and highly
artificial language is characterized in terms of the concept of a ““ proof.”

To explain in a little more detail, a theory of deduction is based on
an alphabet, which consists of symbols of several sorts. There are the
connectives and parentheses, which are used to construct compound propo-

1

2 Introduction

sitions from given propositions of the language; and there are symbols
that yield the basic, atomic propositions of the language. As a first step
toward characterizing the propositions of the language, it is convenient to
introduce the notion of an expression of the language. An expression 1s any
finite string of symbols of the language, with repetitions allowed. Certain
sequences of propositions are recognized as “proofs,” and the last
proposition of each proof is said to be provable. Using the notion of a
provable proposition, we can characterize in a purely formal manner the
consequences of a sct of propositions.

As we have suggested, we shall present two theories of deduction in
this book. The first of these, the propositional calculus, involves a
language whose connectives are ““not’’ and the ““inclusive or.” We shall
motivate this theory of deduction, which is highly abstract, by considering
statement systems, which are simple and concrete. In this setting, we can
utilize the truth-table approach of symbolic logic.

The second theory of deduction that we develop in this book is a
version of the classical predicate calculus. This involves 1 language whose
connectives are “"not,”’ the ‘““inclusive or,” and *‘for each” (the universal
quantifier). We shall motivate this theory of deduction by considering
semantical systems, a much simpler notion.

PART I
Statement Systems

and
Propositional Calculus

Statement Systems

1.1. Statement Systems

A statement system consists of a given set of statements, each of which 1s
assigned a truth-value frue or false. Each statement system has its own
language, which is built up from its initial statements by connecting them
with the logical connectives not (denoted by —) and the nclusive or
(denoted by v). Applying the truth-table definitions of these connectives,
we easily compute a unique truth-value for each of the compound state-
ments in the language of the statement system. We shall go into this 1n
Section 1.2.

Since a statement system 1nvolves a set of objects, called statements,
and since each of these objects has a unique truth-value, we shall identify
a statement system with a map whose range is included in {true, false}.
The domain of this map 1s the set of initial statements of the statement
system. By a statement system, then, we mean any map > with a non-
empty domain and with range included in {true, false}. We regard the
members of dom > as statements (so we use this term in a generalized
sense); each of these objects 1s assigned a truth-value by the map .
Thus, a statement system > consists of objects, called statements, each
of which is assigned a truth-value by the map >.

Of course, a statement system may involve actual statements in the
usual sense of the term.

Example 1. Let 3 be the map with range {true, false} and domain

{grass is green, oil is cheap, logic is easy, Washington is the
capital of the United States}

6 Chap. 1 ¢ Statement Systems

such that > associates frue with “grass is green”” and “ Washington is the
capital of the United States,” and 3 associates false with “oil is cheap”
and “logic is easy.” Then 3 is a statement system.

Note that we obtain different statement systems from a given set of
statements by assigning truth-values in different ways to the statements
of the system. To illustrate, let us change the truth-values assigned to the
statements of the statement system of Example 1.

Example 2. Let 3 be the map with domain

{grass is green, oil is cheap, logic is easy, Washington is the
capital of the United States}

such that > associates false with each statement in its domain. Then S is
a statement system.

We point out that the statement system of Example 2 is different
from the statement system of Example 1. By a statement system we mean
a map whose range is included in {true, false} and whose domain is non-
empty; the maps of the two examples are certainly different.

The members of the domain of a statement system (i.e., its state-
ments) need not be actual statements. Here is an example.

' Example 3. Let 3 be the map of {S, 7, U} into {true, false} that
associates true with T and associates false with S and U. Then S is a
statement system.

1.2. Language of a Statement System

Each statement system 3 has its own language, which is built up
from the statements in dom > by means of the logical connectives not (—)
and the inclusive or (v). Each grammatical expression of this language is
said to be a statement well-formed formula, or swff for short. Thus, each
swit of 3 consists of a finite number of objects in dom 3 linked by the
connectives — and v (and parentheses). |

More formally, we say that the expression (.S) is an atomic swff of 3
for each S edom . The remaining swffs of > are defined as follows.
Let 4 and B be any swffs of 2 ; then we say that (—A4) and (4 v B) are
swits of >. This is subject to the requirement that each swiff of 5 involves
only a fimte number of instances of connectives.

We obtain the truth-value of each atomic swff of 3 directly from the
map 2 itself. The truth-value of each compound swif of 3 is obtained by

Sec. 1.3 ® Names for Swils 7

considering the significance of the connectives not and the inclusive or.
Bearing this in mind, we formulate the following definition.

Definition. (1) An atomic swif (S) is true for > if > associates
“true’”’ with S; (S) is false for > if > associates “false” with S. Here,
S € dom >.

(1) (~—A)1s true for 3 if 4 1s false for > ; (—A4) is false for 5 if 4 is
true for >. Here, 4 is any swff of >.

(1) (A v B)istriefor > if Aistruefor >, Bistrue for 5, or both
A and B are true for >; (A v B)is false for 3 if A is false for > and B is
false for > . Here, 4 and B are any swffs of J.

We point out that this definition assigns a unique truth-value to each

swit of >.
'T'o 1llustrate, let > be the statement system of Example 1, Section 1.1.

Let

g = grass is green
o = oil i1s cheap
I = logic is easy
W = Washington is the capital of the United States

Then the following swffs of J are each true for 3:

(&) (=), ((&) Vv (9)), (=((—=(W)) Vv (0)))
The following swffs of 3, are each false for 3 :

(0), (—=(2): ((0) v (—(2)))

1.3. Names for Swifs

The purpose of the parentheses that appear in each swff is to avoid
ambiguous statements. For example, “—S v T could represent either
(—3S8) v T or —(S v T). Moreover, parentheses impose a certain
structure on swifs which we shall find very useful (see Section 2.2).

On the other hand, it is difficult to read a given swff if it involves
many parentheses. We can obtain the best of both worlds by introducing
conventions for omitting parentheses. This is achieved by introducing
names for swils; of course, we must avoid ambiguity, i.e., each of .our
names must name a unique swif.

We shall usually omit parentheses whenever this does not produce
an ambiguous expression. For example, the outermost pair of parentheses
of any swff and the pair of parentheses involved in each atomic swff can

8 Chap. 1 @ Statement Systems

usually be suppressed without harm. For example, let S, T'¢ dom S and
consider the swft

4 = ((—(5)) v ((T) v (5))

Under our agreement, **(—S) v (T v S)” is a name for A.

Short names for certain swifs are obtained by introducing the logical
connectives A (and), — (if . . . then), and « (if and only if). Our agree-
ment is that for any swffs 4 and B,

(A A B) is aname for (—((—4) v (—B)))
(A — B) is a name for ((——4) v B)
(A<> B) 1saname for ((4-—-»B) A (B— A4))

We emphasize that — and v are the basic connectives of our language,
whereas the connectives A, —, and «» are defined in terms of — and V.
We shall freely drop the outermost pair of parentheses of a name for a
swit. For example, “(S A T)— T is a name for the swff named by

(HA=(=S)y v (=) v T
L.e., the sWit ((—(—((—(S)) v ((T))) v (T)).

Here i1s a very useful convention for omitting parentheses. We shall
attribute a built-in bracketing power, or reach, to the connectives in the
following order: —, v, A, —>, «>, where the connectives weakest in
reach are written first in this list. Under this convention, —> is the
principal connective of the swff § v T — S, since the bracketing power
of — is stronger than the bracketing power of v. In other words, the
reach of v is blocked by the stronger connective — in the name
“S v T'— 8.” So, this is an abbreviation for “(S v T)— S,” which
itself 1s a name for a swff. |

It 1s sometimes possible to make a dot do the work of several pairs
of parentheses. The idea is to-strengthen the bracketing power of a
connective by placing a dot above it. This means that the bracketing
power of the connectives is as follows: —, v, A, =, >, = V., A, =
>, >, V, A, S, <>, and so on. |

Under this ““dot’ convention, the swiff

(S—>T)->{(Uv S)—>(T v U)

can be written as

S—>TS>UvS—>Tv U

without ambiguity.
The intention of the above conventions is not to eliminate all
parentheses, but merely to reduce the number of parentheses that appear

Sec. 1.3 ® Names for Swils 9

in a name for a given swff so that the eye will not be lost in a maze of
parentheses. One or two pairs of parentheses may not be objectionable in
a name for a swff and may even be desirable. Our goal is that names for
swifs should be readable. For this reason, we prefer to write

Sv —-T—>—(Sv T)

ratherthan S v -7 > 55 v T.
In this section we have followed the usual custom of mentioning a

swif A by writing down a name for 4. For example, we introduced
“A A B” as a name for a certain swif C by writing down a name for C

rather than C itself.

Exercises

1. Let > be the statement system such that dom > = {S;,..., S}, where
S = “zis prime,”’ forz =1,...,9, and let > assign ‘“true’ to S; when 7 1s
prime; 1.e., Sa, S5, S5, and S, are true for >, whereas S;, S,, Sg, S5, and Sy
are false for >. Compute the truth-value of each of the following swffs of >:

(a) S5; v Ss.

(b) S; v =S,

(¢) Sg A S;3— S,

(d) ,Sa A STHﬁSQ.

(E) S5 vV —zSﬁ"—?"—:rSf, A" SB..

2. Prove that for every statement system 2, each swiff of > has a unique truth-
value. Hint: If there 1s a swif of > that does not have a unique truth-value,
then there is a shortest swff of > that does not have a unique truth-value.

3. Let A, B, and C be swfls of >, a statement system. Show that each of the
following swfls is true for > :

(a) A v A— A.
(b) A— A v B.
(c) A—-B>Cv A—->Bv (.

4. Let A and A — B be true swils of a statement system >. Prove that B is true
for >.

5. Let 4, B, and C be swfls of a statement system 2. Prove that:

(a) —(4 v B)is true for > iff -4 A —B is true for .

(b) —(A A B)is true for > iff —A4 v —B 1s true for >.

(c) AA (B vV C)istruefor D iff (A A B) v (A A C) is true for >.
d) Av (BAC)istruefor 2 iff (A Vv B) A (A v C) is true for >.
(e) A->B—Cistruefor > ff A A B— { 1s true for D,

