Matt Pharr Greg Humphreys

PHYSICALLY B

SENDERING g il

—-rom Theory to Implementatlon

Second % Jition

AAAAAAAAAAAAAA

SECOND EDITION

MATT PHARR
Intel

GREG HUMPHREYS
NVIDIA

’f’)H)\‘f‘“ ;j
—4- > ,
J T F

AMSTERDAM « BOSTON + HEIDELBERG + LONDON ®
NEW YORK * OXFORD » PARIS - SAN DIEGO | 4
SAN FRANCISCO + SINGAPORE * SYDNEY * TOKYO A

ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

Acquiring Editor: Todd Green

Development Editor: Heather Scherer

Project Manager: Paul Gottehrer

Designer: Joanne Blank

Compositor: Paul C. Anagnostopoulos, Windfall Software

Morgan Kaufmann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2010 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our

website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical treatment may
become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for whom
they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or
ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-375079-2

Printed in China
10 11 12 13 14 10987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BQOKAID qyhre Foundation

For information on all MK publications visit our website at www.mkp.com

Physically Based Rendering is a terrific book. It covers all the marvelous math, fascinating
physics, practical software engineering, and clever tricks that are necessary to write a state-
of-the-art photorealistic renderer. All of these topics are dealt with in a clear and pedagogical
manner without omitting the all-important practical details.

pbrt is not just a “toy” implementation of a ray tracer, but a general and robust full-scale
global illumination renderer. It contains many important optimizations to reduce execution
time and memory consumption for complex scenes. Furthermore, pbrt is easy to extend to
experiment with other rendering algorithm variations.

This book is not only a textbook for students, but also a useful reference book for practitioners
in the field. The second edition has been extended with sections on Metropolis light transport,
subsurface scattering, precomputed light transport, and more.

Per Christensen
Senior Software Developer, RenderMan Products, Pixar Animation Studios

Looking for a job in research or high end rendering? Get your kick-start education and
start your own project with this book that comes along with both theory and real examples,
meaning real code.

With their second edition, Matt Pharr and Greg Humphreys provide easy access to even the
most advanced rendering techniques like Metropolis light transport and quasi-Monte Carlo
methods. In addition the framework lets you skip the bootstrap pain of getting data into and
out of your renderer.

The holistic approach of literate programming results in a clear logic of an easy-to-read text.
If you are serious about graphics, there is no way around this unique and extremely valuable
book that is closest to the state of the art.

Alexander Keller
Chief Scientist, Mental Images

To Deirdre, who even let me bring the manuscript on our honeymoon.

To Isabel and Leila, the two most extraordinary people I've ever met. May your pixels
never be little squares.

G. H.

ABOUT THE AUTHORS

Matt Pharr is a Principal Engineer at Intel, working as the lead architect in the Ad-
vanced Rendering Technology group. He previously co-founded Neoptica, which worked
on programming models for graphics on heterogeneous CPU+GPU systems; Neoptica
was acquired by Intel. Before Neoptica, Matt was in the Software Architecture group at
NVIDIA, co-founded Exluna, and worked in Pixar’s Rendering R&D group. He received
his Ph.D. from the Stanford Graphics Lab, working under the supervision of Pat Hanra-
han. He was also the editor of GPU Gems 2.

Greg Humphreys is a member of the OptiX raytracing team at NVIDIA. Previously, he
was a professor of Computer Science at the University of Virginia, where he conducted
research in both high performance and physically based computer graphics, as well as
computer architecture and visualization. Greg has a B.S.E. degree from Princeton, and a
Ph.D. in Computer Science from Stanford under the supervision of Pat Hanrahan. When
he’s not tracing rays, Greg enjoys tournament bridge, knitting, and riding his motorcycle.

[Just as] other information should be available to those who want to learn and understand,
program source code is the only means for programmers to learn the art from their prede-
cessors. It would be unthinkable for playwrights not to allow other playwrights to read their
plays [or to allow them] at theater performances where they would be barred even from tak-
ing notes. Likewise, any good author is well read, as every child who learns to write will
read hundreds of times more than it writes. Programmers, however, are expected to invent
the alphabet and learn to write long novels all on their own. Programming cannot grow and
learn unless the next generation of programmers has access to the knowledge and information
gathered by other programmers before them. —Erik Naggum

Rendering is a fundamental component of computer graphics. At the highest level of
abstraction, rendering is the process of converting a description of a three-dimensional
scene into an image. Algorithms for animation, geometric modeling, texturing, and
other areas of computer graphics all must pass their results through some sort of ren-
dering process so that they can be made visible in an image. Rendering has become
ubiquitous; from movies to games and beyond, it has opened new frontiers for creative
expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental prob-
lems such as determining which objects are visible from a given viewpoint. As effective
solutions to these problems have been found and as richer and more realistic scene de-
scriptions have become available thanks to continued progress in other areas of graphics,
modern rendering has grown to include ideas from a broad range of disciplines, includ-
ing physics and astrophysics, astronomy, biology, psychology and the study of perception,
and pure and applied mathematics. The interdisciplinary nature of rendering is one of
the reasons that it is such a fascinating area of study.

This book presents a selection of modern rendering algorithms through the documented
source code for a complete rendering system. All of the images in this book, including
the one on the front cover, were rendered by this software. All of the algorithms that
came together to generate these images are described in these pages. The system, pbrt, is
written using a programming methodology called literate programming that mixes prose
describing the system with the source code that implements it. We believe that the literate
programming approach is a valuable way to introduce ideas in computer graphics and
computer science in general. Often, some of the subtleties of an algorithm can be unclear
or hidden until it is implemented, so seeing an actual implementation is a good way to
acquire a solid understanding of that algorithm’s details. Indeed, we believe that deep
understanding of a small number of algorithms in this manner provides a stronger base
for further study of computer graphics than does superficial understanding of many.

XX

In addition to clarifying how an algorithm is implemented in practice, presenting these
algorithms in the context of a complete and nontrivial software system also allows us
to address issues in the design and implementation of medium-sized rendering systems.
The design of a rendering system’s basic abstractions and interfaces has substantial im-
plications for both the elegance of the implementation and the ability to extend it later,
yet the trade-offs in this design space are rarely discussed.

pbrt and the contents of this book focus exclusively on photorealistic rendering, which
can be defined variously as the task of generating images that are indistinguishable from
those that a camera would capture in a photograph, or as the task of generating images
that evoke the same response from a human observer as looking at the actual scene. There
are many reasons to focus on photorealism. Photorealistic images are crucial for the
movie special-effects industry because computer-generated imagery must often be mixed
seamlessly with footage of the real world. In entertainment applications where all of the
imagery is synthetic, photorealism is an effective tool for making the observer forget that
he or she is looking at an environment that does not actually exist. Finally, photorealism
gives a reasonably well-defined metric for evaluating the quality of the rendering system’s
output.

A consequence of our approach is that this book and the system it describes do not ex-
haustively cover the state-of-the-art in rendering; many interesting topics in photorealis-
tic rendering will not be introduced either because they don’t fit well with the architecture
of the software system (e.g., finite-element radiosity algorithms) or because we believed
that the pedagogical value of explaining the algorithm was outweighed by the complexity
of its implementation. We will note these decisions as they come up and provide point-
ers to further resources so that the reader can follow up on topics of interest. Many other
areas of rendering, including interactive rendering, visualization, and illustrative forms
of rendering such as pen-and-ink styles, aren’t covered in this book at all. Nevertheless,
many of the algorithms and ideas in this system (e.g., algorithms for texture map anti-
aliasing) are applicable to a wider set of rendering styles.

AUDIENCE

Our primary intended audience for this book is students in graduate or upper-level un-
dergraduate computer graphics classes. This book assumes existing knowledge of com-
puter graphics at the level of an introductory college-level course, although certain key
concepts such as basic vector geometry and transformations will be reviewed here. For
students who do not have experience with programs that have tens of thousands of lines
of source code, the literate programming style gives a gentle introduction to this com-
plexity. We pay special attention to explaining the reasoning behind some of the key
interfaces and abstractions in the system in order to give these readers a sense of why
the system is structured in the way that it is.

Our secondary, but equally important, audiences are advanced graduate students and
researchers, software developers in industry, and individuals interested in the fun of writ-
ing their own rendering systems. Although many of the ideas in this book will likely be
familiar to these readers, seeing explanations of the algorithms presented in the liter-
ate style may provide new perspectives. pbrt includes implementations of a number of

xxi

advanced and/or difficult-to-implement algorithms and techniques, such as subdivision
surfaces, Monte Carlo light transport and Metropolis sampling, subsurface scattering,
and precomputed light transport algorithms; these should be of particular interest to
experienced practitioners in rendering. We hope that delving into one particular organi-
zation of a complete and nontrivial rendering system will also be thought provoking to
this audience.

OVERVIEW AND GOALS

pbrt is based on the ray-tracing algorithm. Ray tracing is an elegant technique that has
its origins in lens making; Carl Freidrich Gauss traced rays through lenses by hand in
the 19t century. Ray-tracing algorithms on computers follow the path of infinitesimal
rays of light through the scene until they intersect a surface. This approach gives a
simple method for finding the first visible object as seen from any particular position
and direction, and is the basis for many rendering algorithms.

pbrt was designed and implemented with three main goals in mind: it should be com-
plete, it should be illustrative, and it should be physically based.

Completeness implies that the system should not lack key features found in high-quality
commercial rendering systems. In particular, it means that important practical issues,
such as antialiasing, robustness, and the ability to efficiently render complex scenes,
should all be addressed thoroughly. It is important to consider these issues from the
start of the system’s design, since these features can have subtle implications for all
components of the system and can be quite difficult to retrofit into the system at a later
stage of implementation.

Our second goal means that we tried to choose algorithms, data structures, and ren-
dering techniques with care and with an eye toward readability and clarity. Since their
implementations will be examined by more readers than is the case for many other ren-
dering systems, we tried to select the most elegant algorithms that we were aware of and
implement them as well as possible. This goal also required that the system be small
enough for a single person to understand completely. We have implemented pbrt us-
ing an extensible architecture, with the core of the system implemented in terms of a set
of carefully-designed abstract base classes, and as much of the specific functionality as
possible in implementations of these base classes. The result is that one doesn’t need to
understand all of the specific implementations in order to understand the basic structure
of the system. This makes it easier to delve deeply into parts of interest and skip others,
without losing sight of how the overall system fits together.

There is a tension between the two goals of being complete and being illustrative. Imple-
menting and describing every possible useful technique would not only make this book
extremely long, but also would make the system prohibitively complex for most readers.
In cases where pbrt lacks a particularly useful feature, we have attempted to design the
architecture so that the feature could be added without altering the overall system design.

The basic foundations for physically based rendering are the laws of physics and their
mathematical expression. pbrt was designed to use the correct physical units and con-
cepts for the quantities it computes and the algorithms it implements. When configured

xxii REFALE

to do so, pbrt can compute images that are physically correct; they accurately reflect the
lighting as it would be in a real-world version of the scene. One advantage of the deci-
sion to use a physical basis is that it gives a concrete standard of program correctness:
for simple scenes, where the expected result can be computed in closed form, if pbrt
doesn’t compute the same result, we know there must be a bug in the implementation.
Similarly, if different physically based lighting algorithms in pbrt give different results
for the same scene, or if pbrt doesn’t give the same results as another physically based
renderer, there is certainly an error in one of them. Finally, we believe that this physically
based approach to rendering is valuable because it is rigorous. When it is not clear how a
particular computation should be performed, physics gives an answer that guarantees a
consistent result.

Efficiency was given lower priority than these three goals. Since rendering systems often
run for many minutes or hours in the course of generating an image, efficiency is clearly
important. However, we have mostly confined ourselves to algorithmic efficiency rather
than low-level code optimization. In some cases, obvious micro-optimizations take a
backseat to clear, well-organized code, although we did make some effort to optimize
the parts of the system where most of the computation occurs.

In the course of presenting pbrt and discussing its implementation, we hope to convey
some hard-learned lessons from years of rendering research and development. There is
more to writing a good renderer than stringing together a set of fast algorithms; making
the system both flexible and robust is a difficult task. The system’s performance must
degrade gracefully as more geometry or light sources are added to it, or as any other axis
of complexity is pushed. Numeric stability must be handled carefully, and algorithms
that don’t waste floating-point precision are critical.

The rewards for developing a system that addresses all these issues are enormous—it is
a great pleasure to write a new renderer or add a new feature to an existing renderer
and use it to create an image that couldn’t be generated before. Our most fundamental
goal in writing this book was to bring this opportunity to a wider audience. Readers
are encouraged to use the system to render the example scenes in the pbrt software
distribution as they progress through the book. Exercises at the end of each chapter
suggest modifications to the system that will help clarify its inner workings, and more
complex projects to extend the system by adding new features.

The website for this book is located at www.pbrt.org. The latest version of the pbrt source
code is available from this site and we will also post errata and bug fixes, additional scenes
to render, and supplemental utilities. Any bugs in pbrt or errors in this text that are not
listed at the website can be reported to the email address bugs@pbrt.org. We greatly value
your feedback!

CHANGES SINCE THE FIRST EDITION

Six years have passed since the publication of the first edition of this book. In that
time, thousands of copies of the book have been sold and the pbrt software has been
downloaded thousands of times from the book’s website. The pbrt user base has given

xxiii

us a significant amount of feedback and encouragement, and our experience with the
system guided many of the decisions we made in making changes between the version of
pbrt presented in the first edition and the updated version described here. In addition to a
number of bug fixes, we also made several significant design changes and enhancements:

1. Removal of the plugin architecture. The first version of pbrt used a run-time
plugin architecture to dynamically load code for implementations of objects like
shapes, lights, integrators, cameras, and other objects that were used in the scene
currently being rendered. This approach allowed users to extend pbrt with new
object types (e.g., new shape primitives) without recompiling the entire rendering
system. This approach initially seemed elegant, but it complicated the task of
supporting pbrt on multiple platforms and it made debugging more difficult. The
only new usage scenario that it truly enabled (binary-only distributions of pbrt or
binary plugins) was actually contrary to our pedagogical and open-source goals.
Therefore, the plugin architecture was dropped in this edition.

2. Removal of the image processing pipeline. The first version of pbrt provided a
tone-mapping interface that converted high dynamic range (HDR) floating point
output images directly into low dynamic range TIFFs for display. This function-
ality made sense in 2004, as support for HDR images was still sparse. In 2010,
however, advances in digital photography have made HDR images commonplace.
Although the theory and practice of tone mapping are elegant and worth learning,
we decided to focus the new book exclusively on the process of image formation
and ignore the topic of image display. Interested readers should read the book writ-
ten by Reinhard et al. (2005) for a thorough and modern treatment of the HDR
image display process.

3. Task parallelism. Multicore architectures are now ubiquitous, and we felt that pbrt
would not remain relevant without the ability to scale to the number of locally
available cores. We also hope that the parallel programming implementation de-
tails documented in this book will help graphics programmers understand some
of the subtleties and complexities in writing scalable parallel code (e.g., choosing
appropriate task granularities or mutex types), which is still a difficult and too-
infrequently taught topic.

4. Appropriateness for “production” rendering. The first version of pbrt was in-
tended exclusively as a pedagogical tool and a stepping-stone for rendering re-
search. Indeed, we made a number of decisions in preparing the first edition that
were contrary to use in a production environment, such as limited support for
image-based lighting, no support for motion blur, and a photon mapping im-
plementation that wasn’t robust in the presence of complex lighting. With much
improved support for these features as well as support for subsurface scattering
and Metropolis light transport, we feel that pbrt is now much more suitable for
rendering very high-quality images of complex environments as it is presented
here. The tradeoff in making these improvements is that as the system becomes
more feature-complete, it may be harder for instructors to use the new software
to create manageable assignments for students. While this is a real concern, we
had similar reservations about the first version of pbrt “relieving” students of the
burden and benefits of writing their own ray-tracing system from scratch. With

xXiv "REFALE

experience from the first edition being used at many universities, we have come
to believe that this tradeoff was a good one, and we hope and expect that the new
edition will continue to enable high-quality rendering courses.

ACKNOWLEDGMENTS

Pat Hanrahan has contributed to this book in more ways than we could hope to acknowl-
edge; we owe a profound debt to him. He tirelessly argued for clean interfaces and finding
the right abstractions to use throughout the system, and his understanding of and ap-
proach to rendering deeply influenced its design. His willingness to use pbrt and this
manuscript in his rendering course at Stanford was enormously helpful, particularly in
the early years of its life when it was still in very rough form; his feedback throughout
this process has been crucial for bringing the text to its current state. Finally, the group
of people that Pat helped assemble at the Stanford Graphics Lab, and the open environ-
ment that he fostered, made for an exciting, stimulating, and fertile environment. We feel
extremely privileged to have been there.

We owe a debt of gratitude to the many students who used early drafts of this book in
courses at Stanford and the University of Virginia between 1999 and 2004. These students
provided an enormous amount of feedback about the book and pbrt. The teaching
assistants for these courses deserve special mention: Tim Purcell, Mike Cammarano, lan
Buck, and Ren Ng at Stanford, and Nolan Goodnight at Virginia. A number of students
in those classes gave particularly valuable feedback and sent bug reports and bug fixes;
we would especially like to thank Evan Parker and Phil Beatty. A draft of the manuscript
of this book was used in classes taught by Bill Mark and Don Fussell at the University
of Texas, Austin, and Raghu Machiraju at Ohio State University; their feedback was
invaluable, and we are grateful for their adventurousness in incorporating this system
into their courses, even while it was still being edited and revised.

Matt Pharr would like to acknowledge colleagues and co-workers in rendering-related
endeavors who have been a great source of education and who have substantially influ-
enced his approach to writing renderers and his understanding of the field. Particular
thanks go to Craig Kolb, who provided a cornerstone of Matt’s early computer graphics
education through the freely available source code to the rayshade ray-tracing system,
and Eric Veach, who has also been generous with his time and expertise. Thanks also
to Doug Shult and Stan Eisenstat for formative lessons in mathematics and computer
science during high school and college, respectively, and most importantly to Matt’s par-
ents, for the education they’ve provided and continued encouragement along the way.
Finally, thanks also to Nick Triantos, Jayant Kolhe, and NVIDIA for their understanding
and support through the final stages of the preparation of the first edition of the book.

Greg Humphreys is very grateful to all the professors and TAs who tolerated him when
he was an undergraduate at Princeton. Many people encouraged his interest in graph-
ics, specifically Michael Cohen, David Dobkin, Adam Finkelstein, Michael Cox, Gordon
Stoll, Patrick Min, and Dan Wallach. Doug Clark, Steve Lyon, and Andy Wolfe also su-
pervised various independent research boondoggles without even laughing once. Once,
in a group meeting about a year-long robotics project, Steve Lyon became exasperated

and yelled, “Stop telling me why it can’t be done, and figure out how to do it!”—an im-

PREFACE XXV

promptu lesson that will never be forgotten. Eric Ristad fired Greg as a summer research
assistant after his freshman year (before the summer even began), pawning him off on an
unsuspecting Pat Hanrahan and beginning an advising relationship that would span 10
years and both coasts. Finally, Dave Hanson taught Greg that literate programming was
a great way to work, and that computer programming can be a beautiful and subtle art
form.

We are also grateful to Don Mitchell, for his help with understanding some of the de-
tails of sampling and reconstruction; Thomas Kollig and Alexander Keller, for explaining
the finer points of low-discrepancy sampling; and Dave Eberly, “Just d’FAQs,” Hans-
Bernhard Broeker, Steve Westin, and Gernot Hoffmann, for many interesting threads on
comp.graphics.algorithms. Christer Ericson had a number of suggestions for improving
our kd-tree implementation. Christophe Hery helped us with understanding the nuances
of subsurface scattering and Peter-Pike Sloan was kind enough to carefully review Chap-
ter 17 on precomputed light transport algorithms.

Many people and organizations have generously supplied us with scenes and models for
use in this book and the pbrt distribution. Their generosity has been invaluable in help-
ing us create interesting example images throughout the text. The bunny, Buddha, and
dragon models are courtesy of the Stanford Computer Graphics Laboratory’s scanning
repository at graphics.stanford.edu/data/3Dscanrep/. The ecosystem scene was created by
Oliver Deussen and Bernd Lintermann for a paper by them and collaborators (Deussen,
Hanrahan, Lintermann, Mech, Pharr, and Prusinkiewicz 1998). The “killeroo” model is
included with permission of Phil Dench and Martin Rezard (3D scan and digital repre-
sentations by headus, design and clay sculpt by Rezard). The physically accurate smoke
data sets were created by Duc Nguyen and Ron Fedkiw. Nolan Goodnight created envi-
ronment maps with a realistic skylight model. The Cornell Program of Computer Graph-
ics Light Measurement Laboratory allowed us to include measured BRDF data, and Paul
Debevec provided numerous high dynamic-range environment maps. Marc Ellens pro-
vided spectral data for a variety of light sources, and the spectral RGB measurement data
for a variety of displays is courtesy of Tom Lianza at X-Rite.

We are particularly grateful to Guillermo M. Leal Llaguno of Evolucion Visual, www
.evvisual.com, who modeled and rendered the San Miguel scene featured on the cover
and in numerous figures in the book. We would also especially like to thank Marko
Dabrovic (www.3lhd.com) and Mihovil Odak at RNA Studios (www.rna.hr), who sup-
plied a bounty of excellent models and scenes, including the Sponza atrium, the Sibenik
cathedral, and the Audi TT car model. Many thanks are also due to Florent Boyer (www
-florentboyer.com), who provided the contemporary house scene used in many of the
images in Chapter 15.

We would also like to thank the book’s reviewers, all of whom had insightful and con-
structive feedback about the manuscript at various stages of its progress. We’d particu-
larly like to thank the reviewers who provided feedback on both editions of the book: Ian
Ashdown, Per Christensen, Doug Epps, Dan Goldman, Eric Haines, Erik Reinhard, Pete
Shirley, Peter-Pike Sloan, Greg Ward, and a host of anonymous reviewers. For the second
edition, Janne Kontkanen, Nelson Max, Bill Mark, and Eric Tabellion also contributed
numerous helpful suggestions.

xxvi

We’d like to thank the faculty members at various universities who have used pbrt in their
courses, including Emmanuel Agu, Dirk Arnold, Stephen Chenney, Yung-Yu Chuang,
Don Fussell, Pat Hanrahan, Bill Mark, Nelson Max, Gary Meyer, Torsten Méller, Rick
Parent, Sumanta Pattanaik, and Luiz Velho.

Many people have contributed to not only pbrt but to our own better understanding of
rendering through bug reports, patches, and suggestions about better implementation
aproaches. A few have made particularly substantial contributions—we would especially
like to thank Kevin Egan, John Danks, Volodymyr Kachurovskyi, Solomon Boulos, and
Stephen Chenney. In addition, we would also like to thank Rachit Agrawal, Frederick
Akalin, Mark Bolstad, Thomas de Bodt, Brian Budge, Mark Colbert, Shaohua Fan, Nigel
Fisher, Jeppe Revall Frisvad, Robert G. Graf, Asbjern Heid, Keith Jeffery, Greg Johnson,
Aaron Karp, Donald Knuth, Martin Kraus, Murat Kurt, Larry Lai, Craig McNaughton,
Swaminathan Narayanan, Anders Nilsson, Jens Olsson, Vincent Pegoraro, Nils Thuerey,
Xiong Wei, Wei-Wei Xu, Arek Zimny, and Matthias Zwicker for their suggestions and
bug reports. Finally, we would like to thank the LuxRender developers and the LuxRen-
der community, particularly Terrence Vergauwen, Jean-Philippe Grimaldi, and Asbjern
Heid; it has been a delight to see the rendering system they have built from pbrt’s foun-
dation, and we have learned from reading their source code and implementations of new
rendering algorithms.

For the production of the first edition, we would also like to thank Tim Cox (senior
editor), for his willingness to take on this slightly unorthodox project and for both his
direction and patience throughout the process. We are very grateful to Elisabeth Beller
(project manager), who has gone well beyond the call of duty for this book; her ability
to keep this complex project in control and on schedule has been remarkable, and we
particularly thank her for the measurable impact she has had on the quality of the
final result. Thanks also to Rick Camp (editorial assistant) for his many contributions
along the way. Paul Anagnostopoulos and Jacqui Scarlott at Windfall Software did the
book’s composition; their ability to take the authors’ homebrew literate programming file
format and turn it into high-quality final output while also juggling the multiple unusual
types of indexing we asked for is greatly appreciated. Thanks also to Ken DellaPenta
(copyeditor) and Jennifer McClain (proofreader) as well as to Max Spector at Chen
Design (text and cover designer), and Steve Rath (indexer).

For the second edition, we’d like to thank Greg Chalson who talked us into expanding and
updating the book; Greg also ensured that Paul Anagnostopoulos at Windfall Software
would again do the book’s composition. We’d like to thank Paul again for his efforts in
working with this book’s production complexity. Finally, we’d also like to thank Todd
Green, Paul Gottehrer, and Heather Scherer at Elsevier.

ABOUT THE COVER

The “San Miguel” scene on the cover of the book was modeled and then rendered by
Guillermo M. Leal Llaguno of Evolucién Visual, www.evvisual.com, based on a hacienda
that he visited in San Miguel de Allende, Mexico. The scene was modeled in 3ds max and
exported to the pbrt file format with a custom script written by Guillermo. The scene
features just over 2.5 million unique triangles and has a total geometric complexity of

PREFACE xxvii

10.7 million triangles due to the use of object instancing; the pbrt files that describe
the scene geometry require 620 MB of on-disk storage. There are a total of 354 texture
maps, representing 293 MB of texture data. Final rendering of the cover image at 1496
by 2235 resolution using pbrt took over 40 hours of computation on an eight-core
Mac Pro computer. The scene is available in the scenes/sanmiguel directory of the pbrt
distribution.

ADDITIONAL READING

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas be-
hind literate programming as well as his web programming environment. The seminal
TEX typesetting system was written with web and has been published as a series of books
(Knuth 1986, Knuth 1993a). More recently, Knuth has published a collection of graph
algorithms in literate format in The Stanford GraphBase (Knuth 1993b). These programs
are enjoyable to read and are excellent presentations of their respective algorithms. The
website www.literateprogramming.com has pointers to many articles about literate pro-
gramming, literate programs to download, and a variety of literate programming sys-
tems; many refinements have been made since Knuth’s original development of the idea.

The only other literate programs we know of that have been published as books are the
implementation of the 1cc compiler, which was written by Christopher Fraser and David
Hanson and published as A Retargetable C Compiler: Design and Implementation (Fraser
and Hanson 1995), and Martin Ruckert’s book on the mp3 audio format, Understanding
MP3 (Ruckert 2005).

!

~ -al/)

CHAPTER 01.

1.1

1.2

1.3

1.4

1.5

Literate Programming
1.1.1 Indexing and Cross-Referencing

Photorealistic Rendering and the Ray-Tracing Algorithm

1.2.1 Cameras

1.2:2 Ray-Object Intersections

1.2.3 Light Distribution

1.2.4 Visibility

1:2:5 Surface Scattering

1.2.6 Recursive Ray Tracing

1.2.7 Ray Propagation

pbrt: System Overview

1.3.1 Phases of Execution

1.3.2 Scene Representation

1.3.3 Renderer Interface and SamplerRenderer
1.3.4 The Main Rendering Loop

1.3.5 Parallelization of pbrt

1.3.6 An Integrator for Whitted Ray Tracing

How to Proceed through This Book
1.4.1 The Exercises

Using and Understanding the Code

1.5.1 Pointer or Reference?
1.5.2 Code Optimization
1.5.3 The Book Web site
1.5.4 Extending the System
L.5.5 Bugs

Further Reading

Exercise

CHAPTER 02.

2.1

2.2

Coordinate Systems

2:1.1 Coordinate System Handedness
Vectors

2:2.0 Arithmetic

2.2.2 Scaling

2:2.3 Dot and Cross Product

L S R

K=}

11
13
15
16
18
24
26
35
41
47
48

48

48
49
49
49
50

50
52

55
56
57
58

59
60

