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Editor's Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely
to survive changes of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied but
where it has not yet penetrated because of insufficient information.

The theory of partitions is one of the very few branches of mathematics
that can be appreciated by anyone who is endowed with little more than a
lively interest in the subject. Its applications are found wherever discrete

“objects are to be counted or classified, whether in the molecular and the
atomic studies of matter, in the theory of numbers, or in combinatorial
problems from all sources.

Professor Andrews has written the first thorough survey of this many-
sided field. The specialist will consult it for the more recondite results, the
student will be challenged by many a deceptively simple fact, and the applied
scientist may locate in it the missing identity he needs to organize his data.

Professor Turdu’s untimely death has left this book without a suitable
introduction. It is fitting to dedicate it to the memory of one of the masters
of number theory.

GIAN-CARLO ROTA



Preface

Let W8 begin by acknowledging that the word *‘partition” has numerous
meanings in mathematics. Any time a division of some object into subobjects
is undertaken, the word partition is likely to pop up. For the purposes of this
book a “partition of n” is a nonincreasing finite sequence of positive imtegers
whose sum is n. We shall extend this definition in Chapters 11, 12, and 13
when we consider higher-dimensional partitions, partitions of n-tuples, and
partitions of sets, respectively. Compositions or ordered partitions (merely
finite sequences of positive integers) will be considered in Chapter 4.

The theory of partitions has an interesting history. Certain special problems
in partitions certainly date back to the Middle Ages; however, the first
discoveries of any depth were made in the eighteenth century when L. Euler
proved many beautiful and significant partition theorems. Euler indeed laid
the foundations of the theory of partitions. Many of the other great math-
ematicians — Cayley, Gauss, Hardy, Jacobi, Lagrange, Legendre, Littlewood,
Rademacher, Ramanujan, Schur, and Sylvester—have contributed to the
development of the theory.

There have been almost no books devoted entirely to partitions. Generally
the combinatorial and formal power series aspects of partitions have found
a place in older books on elementary analysis (Introductio in Analysin
Infinitorum by Euler, Textbook of Algebra by Chrystal), in encyclopedic
surveys of number theory (Niedere Zahlentheorie by Bachman, Introduction
to the Theory of Numbers by Hardy and Wright), and in combinatorial
analysis books (Combinatory Analysis by MacMahon, Introduction to
Combinatorial Analysis by Riordan, Combinatorial Methods by Percus,
Advanced Combinatorics by Comtet). The asymptotic problems associated
with partitions have, on the other hand, been treated in works on analytic
or additive number theory (Introduction to the Analytic Theory of Numbers
by Ayoub, Modular Functions in Analytic Number Theory by Knopp,
Topics from the Theory of Numbers by Grosswald, Additive Zahlentheorie
by Ostmann, Topics in Analytic Number Theory by Rademacher).

"If one considers the applications of partitions in various branches of
mathematics and statistics, one is struck by the interplay of combinatorial
and asymptotic methods. We have tried to organize this book so that it
adequately develops and interrelates both combinatorial and analytic methods.

xiii



xiv Preface

Chapters 1-4 treat the elementary portions of the theory of partitions; of
primary importance here is the use of generating functions.

Chapters S and 6 treat the asymptotic problems. Partition identities are
dealt with in Chapters 7 through 9. Chapter 10 on partition function con-
gruences returns to the analytic aspect of partitions. Chapters 11-13 treat
several generalizations of partitions and Chapter 14 presents a brief discussion
of the computational aspect of partitions.

There are three concluding sections of each chapter: A “Notes™ section
provides historical comment on the material covered; a ‘“‘References” section
provides a substantial but nonexhaustive list of relevant books and papers;
and an “Examples” section provides statements of results not fully covered in
the text. Those examples that occur with an asterisk are significant advances
beyond the material presented in the text; the remainder form a reasonable
set of exercises by which the reader may determine his grasp of the subject
matter. References for the source of the examples occur in the related Notes
section.

Many of the mathematical sciences have seen applications of partitions
recently. Nonparametric statistics require restricted partitions like those in
Chapter 3. Various permutation problems in probability and statistics are
intimately linked with the Simon Newcomb problem of Chapter 4. Particle
physics uses partition asymptotics and partition identities related to the work
in Chapters 5-9. Group theory (through Young tableaux) is intimately
 connected with Chapter 12, and the relationship between partitions and
combinatorial theory is explored in Chapter 13.

The material in this book has been developed over a period of years. My
first acquaintance with partitions came from thrilling lectures delivered by
my thesis adviser, the late Professor Hans Rademacher. Many of the topics
herein have been presented in graduate courses at the Pennsylvania State
University between 1964 and 1975, in seminars at MIT during the 1970-1971
academic year, at the University of Erlangen in the summer of 1975, and at
the University of Wisconsin during the 1975-1976 academic year. I owe a
great debt of gratitude to many people at these four universities. I wish to
thank specially R. Askey, K. Baclawski, B. Berndt, and L. Carlitz, who
contributed many valuable suggestions and comments during the preparation
of this book. :

Finally I thank my wife, Joy, who has throughout this project been both
a help and an inspiration to me.

GEORGE E. ANDREWS



Contents

Chapter 2

2.1
2.2
2.3

Chapter 3
3.1
3.2
33

34
35

Chapter 4
4.1

..........................

Introduction . . . . . . . . . ... ... ...
Infinite Product Generating Functions of One Variable. .
Graphical Representation of Partitions . . . . . . . . .
Examples . . . . . . .. ... .. 0L
Notes . . . .. .. .. e e e e e e e e e
References . . . . . e e e e e e e e e e e e e e

Infinite Series Generating Functions . . . . . . . . . .

Introduction . . . . . . . . . ... .. ... ...
Elementary Series-Product Identities. . . . . . . . . .
Applications to Partitions. . . . . . . . . . .. S
Examples. . . . . . . . . . . . o0
Notes . . . . . . . . . .« c i v v ii e
References . . . . . . . . . .. e e e e e e

Restricted Partitions and Permutations . . . . . . . . .

Introduction . . . . . . . . . . ...
The Generating Function for Restricted Partitions . . . .
Properties of Gaussian Polynomials . . . . . . . . . .
Permutations and Gaussian Multinomial Coefficients

The Unimodal Property . . . . . . . . .. . . . ..
Examples. . . . . . . . . . . ... ... ...
Notes . . . . . . . . . v o v i i
References . . . . . . . . . . . « v v v ..

Compositions and Simon Newcomb’s Problem . . . . . .

Introduction . . . . . e e e e e e

16

17
17
23
28
30
31



viti

4.2
43
44

Chapter 5

5.1
5.2

Chapter *

6.1
6.2
6.3

Chapter 7

7.1
7.2
7.3

7.4

Chapter 8

8.1
8.2
8.3
8.4

Contents
Composition of Numbers. . . . . ., . . . .. ..., 54
Vector Compositions. . . . . . . . . . . . . .. .. 57
Simon Newcomb’s Problem. . . . . . . . . . . . .. 59
Examples. . . . . . . . . . . . . o 63
NOES . . v v v e e e e e e e e e ... 65
References . . . . . . . . . .« « v v v e 65

The Hardy-Ramanujan-Rademacher Expansion of p(n) . . 68

Introduction . . . . . . . . . . ... 68
The Formulaforp(n) . . . . . . . . . . ... ... 71
Examples. . . . . . . . . . . . .00 81
Notes . . . . . PR L 85
References . . . . . . . . . . . . . .. .. ... . 86
The Asymptotics of Infinite Product Generating Functions 88

Introduction . . . . . . . . . . . .. o 88
Proof of Theorem6.2 . . . . . . . . . . . . . . .. 89
Applications of Theorem 6.2 . . . . . . . . . . . .. 97
Examples. . . . . . . . . .. ..o oo 97
Notes . . . . . . .. .. . . ... a e 100
References . . . . . . . . . . . . . « v v v ... 101
Identities of the Rogers-Ramanujan Type . . . . . . . . 103
Introduction . . . . .. .. .. e e e e e e e 103
The Generating Functions . . . . . . . . . . . . .. 106
The Rogers—-Ramanujan Identities and Gordon’s Generali-

zation . . . . . L . L L Lo e e e e e 109
The G6llnitz-Gordon Identities and Their Generalization 113
Examples. . . . . . . . . . 0w e e e 116
Notes . . . . . . .« .« o e e e e e e e 118
References . . . . . . . . . . « v v v v i v v o 118
A General Theory of Partition Identities. . . . . . . . . 121
Introduction . . . . . . . . . . . .. e e e 121
Foundations . . . . . . . . v « « v« « v e 0 e 121
Partition Ideals of Order1 . . . . . . . e e e o124
Linked Partition Ideals. . . . . . . . . . . . . . .. 128
Examples. .. . . . . . . . e e e e 136
Notes . . . . . . . . . v v e e e e 137

References . . . . . .« v v v v e e e e e e e 138



Contents

Chapter 9

9.1
9.2
9.3

Chapter 10

10.1
10.2
10.3

Chapter 11

111
11.2
11.3
11.4

Chapter 12

12.1
12.2
12.3

12.4

ix
Sieve Methods Related to Partitions -~ . . . . . . . . . 139
Introduction . . . . . . . .. .. ..o 139
Inclusion-Exclusion . . . . . . . . . . .. .. ... 139
A Sieve for Successive Ranks . . . . . . e e e e e 142
Examples. . . . . . . . . .. ... .~ . 156
Notes . . . . . . . . . . o . L e e 158
References . . . . . . . . . . . . . oo 158
Congruence Properties of Partition Functions . . . . . . 159
Introduction . . . . . . ... ... L 159
Rédseth’s Theorem for Binary Partitions . . . . . . . . 161
Ramanujan’s Conjecture for 5* . . . . . . . . . . .. 167
Examples. . . . . . . . .. e e e e e e 175
Notes . . . . .. ... ... ... L 177
References . . . . . e e e e e e e e e 178
Higher-Dimensional Partitions . . . . . . . . . . . . . 179
Introduction . . . . . . .. [ . 1"li9
Plane Partitions . . . . . . . . .. .. . .. e e o 179
The Knuth-Schensted Correspondence . . . . . . . . . 184
Higher-Dimensional Partitions . . . . . . . . . . .. 189
Examples. . . . . . . . . . . .. .. ... .. . 198
Notes . . . . . . . . . . L 199
References . . . . . . . . . . . . . . . ... .. . 200
Vector or Multipartite Partitions. . . . . . . . . L2
Introduction . . . . . . . . .. ... ... ... 202
Multipartite Generating Functions. . . . . . . . . . . 202
Bell Polynomials and Formulas for Multipartite: Partition
Functions . . . . . . . . . . . .. ... .. ... 204
Restricted Bipartite Partitions . . . . . . . . . . . . . 207
Examples. . . . . . . . . 209
Notes . . . . . . . . . .. i 210

References . . . . . . . . . . . . . . . ... 211



X Contents
Chapter 13 Partitions in Combinatorics . . . . . . . . . . . . .. 212
13.1 Imtroduction . . . . . . ... ... ... .. ... 212
13.2 Partitions and Finite Vector Spaces . . . . . . . . . . 212
13.3 Partitionsof Sets . . . . . . . . . . . e e e 214

13.4 The Combinatorics of Symmetric Functions. . . . . . . 221
Examples. . . . . . . . . . . . ... ... 225
Notes . . . . . . . . . v v i it e e 227
References . . . . . ., . . . . . .. ... .... 228
Chapter 14 Computations for Partitions . . . . . . . . . . . . . . 230
14.1 Introduction . . . . . . . . . . . . .. .. « ... 23
14.2 Elementary Algorithms. . . . . . . . . . . e 230
14.3 Algorithms from Generating Functions . . . . . . . . 233
14.4 Computations for Higher-Dimensional Partitions . . . . 234
- 14.5 Brief Tables of Partition Functions . . . . . . . . CLo. 237
14.6 Table of the Plane Partition Function . . . . . . . . . 237
14.7 Table of Gaussian Polynomials . . . . . . . . . . . . 240
148 Guideto Tables. . . . . . . . . e e 243
D AR 243
References . . . . . . . . . . .. ... ... 244
Index for Definitions of Symbols . . . . . . .. .. ... .. .. 245
Author Index . . . . . . . . . . . ... .. 250

Subject Index . . . . . . ... .. e e e e e e e e e e 252



ISBN 0-201-13501-9

CHAPTER 1

The Elementary Theory of Partitions

1.1 Introduction

In this book we shall study in depth the fundamental additive decomposition
process: the representation of positive integers by sums of other positive
integers.

DEFINITION 1.1. A partition of a positive integer »n is a finite nonincreasing
sequence of positive integefs 4,, 4,,.. ., 4, such that }7_, 4, = n. The A, are
called the parts of the partition.

Many times the partition (4,, 4, . ., 4,) will be denoted by 4, and we shall
write A - n to denote *“A is a partition of n.” Sometimes it is useful to use a
notation that makes explicit the nymber of times that a particular integer
occurs as a part. Thus if 4 = (4,, 4,,.. ., 4,) - n, we sometimes write

A= (1!:2!:3!3. )

where exactly f; of the 1, are equal to i. Note now that Y ;5 fii = n.

Numerous types of partition problems will concern us in this book;
however, among the most important and fundamental is the question of
enumerating various sets of partitions.

DerFINITION 1.2, The partition function p(n) is the number of partitions
of n. ' .

Remark. Obviously p(n) = 0 when n is negative. We shall set p(0) = 1 with
the observation that the empty sequence forms the only partition of zero. The
following list presents the next six values of p(n) and tabulates the actual
partitions.

=1 1=(Q);

D=2 2=(2), 1+1=1%;

p3) =3 3=@3), 24+1=(12), 1+1+1=@13

pd) =5 4=(4), 3+1=(13), 2+2=(%,
24+14+1=(122), 14+1+14+1=(1%;

ENCYCLOPEDIA OF MATHEMATICS and Its Applications, Gian-Carlo Rota (ed.).
2, George E. Andrews, The Theory of Partitions
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2 The Elementary Theory of Partitions Chap. 1.1

pS) =T 5=(5), 4+41=(14), 3+2=23),
34+14+1=(1%3), 2+2+41=(123,
2414+1+1=(3%), 1+1+1+1+1=@1%;

p6)=11: 6=(6, 5+1=(15, 4+2=029,
4+1+1=(%), 3+3=03%, 3+2+1=(123),
34+14+141=(1%), 242+2=(2%,
24241 41=(1%2%, 2414+1+1+1=(1%),
T+l 4+t 4+1+14+1=(15.

The partition function increases quite rapidly with n. For example, p(10) =
42, p(20) = 627, p(50) = 204226, p(100) = 190569292, and p(200) =
3972999029388.

Many times we are interested in problems in which our concern does not
extend to all partitions of n but only to a particular subset of the partitions
of n.

DEeFINITION 1.3. Let & denote the set of all partitions.
DEFINITION 1.4. Let p(S, n) denote the number of partitions of n that belong
to a subset S of the set & of all partitions.

For example, we might consider @ the set of all partitions with odd parts
and 2 the set of all partitions with distinct parts. Below we tabulate partitions
related to @ and to 2.

Ko,)=1: 1=(),

KO, ) =1: 1+ 1=(19,

p0,3)=2: 3=03), 1+1+1=(13,

pO,4=2: 34+1=(13), 1+14+14+1=(9,
p0,5) =3 5=(5), 3+1+1=(123),
L+ 14+14+141=(0%,

KO, 6)=4: 5+ 1=(15, 3+ 3=(3%,
34141+ 1=(1%),
1+1+14+1414+1=019,

po,N=5 T=@, S5+1+1=(12), 3+3+1=(13%,
3414+ 1+141=(1*3),
I+t +1+141+141=(1".

K2, H)=1: 1=(1),

p2,2) =1 2=(2),

N2,3)=2: 3=(3), 2+1=(12),

2,4)=2: 4=4), 3+1=(»3),

2,5 =3 5=(5), 4+ 1=(14), 3+2=(23),

H2,6)=4: 6=(6), 5+ 1=(15), 4+ 2=4),
34+ 2+ 1=(123),

K2, D=5 T=(7), 6+1=(16), §+2=(25),

' 4+3=(34), 4+2+1=(124).

ISBN 0-201-13501 4
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1.2 Infinite Product Generating Functions of One Variable -3

We point out the rather curious fact that p(0, n) = (2, n) for n < 7
although there is little apparent relationship between the various partitions

listed (see Corollary 1.2).
In this chapter, we shall present two of the most elemental tools for treating

partitions: (1) infinite product gcneratmg functions; (2) graphical representa-
tion of partitions.

1.2 Infinite Product Generaﬁng Functions of One Variable

DEeFINITION 1.5. The generating function f(gq) for the sequence ay, a4, a5, a3, . .
is the power series f(q) = Y.a>0 32"

Remark. For many of the problems we shall encounter, it suffices to
consider f(q) as a “formal power series” in g. With such an approach many
of the manipulations of series and products in what follows may be justified
almost trivially. On the other hand, much asymptotic work (see Chapter 6)
requires that the generating functions be analytic functions of the complex
variable ¢. In actual fact, both approaches have their special merits (recently,
E. Bender (1974) has discussed the circumstances in which we may pass from
one to the other). Generally we shall state our theorems .1 generating
functions with explicit convergence conditions. For the most part we shall
be dealing with absolutely convergent infinite series and infinite products;
consequently, various rearrangements of series and interchanges of summation
will be justified analytically from this simple fact.

DEFINITION 1.6. Let H be a set of positive integers. We let “H” denote the
set of all partitions whose parts lie in H. Consequently, p(“H”, n) is the
number of partitions of n that have all their parts in H.

Thus if H, is the set of all odd positive integers, then “H,” = 0.
P(“Ho”, n) = p(@, n)'

DEerFINITION 1.7. Let H be a set of positive integers. We let “H”(< d) denote
the set of all partitions in which no part appears more than d times and each
part is in H.

Thus if N is the set of all positive integers, then p(“N(< 1), n) = p(2, n).
THEOREM 1.1. Let H be a set of positivé integers, and let

fl@) = Z;,op(“H”, n)q", (1.2.1)
Jd9) = Y, p(“H(< d), n)g". 1.2.2)

230



4 The Elementary Theory of Partitions Chap. 1.2

‘Then for|q| <1

f(@) = 11(1 -q"7, (1.2.3)
D) = l:[{(l +q¢ ++q™
| = H(l — q(tH-l)n)(l _ qn)—l‘ (12.4)
neH

Remark. The equivalence of the two forms for f,(q) follows from the simple
formula for the sum of a finite geometric series:

1 — x"*!
l+x+x*+ 4 X =
1—-x

Proof. We shall proceed in a formal manner to prove (1.2.3) and (1.2.4);
at the conclusion of our proof we shall sketch how to justify our steps analyt-
ically. Let us index the elements of H, so that H = {hy, h,, hs, h,,...}. Then

[[a-a" =Tl +q"+ "+ +--)

=(l+qh1+q2h1+q3hl +,._)
x(1+qhz+q2"z+q3hz+...)

X (1+qh3+q2h1+q3’l3 +)

= Z 2 z . .qdlh1+ﬂzbz+03’l3+"'
a120 8220 a320

and we observe that the exponent of g is just the partition (h,**h,°*h;*- - -).
Hence g" will occur in the foregoing summation once for each partition of n
into parts taken from H. Therefore

A - g9t =Y p“H”, n)g".

nell n20
The proof of (1.2.4) is identical with that of (1.2.3) except that the infinite
geometric series is replaced by the finite geometric series:

[TA+q +a" ++q"
welH

= Z z 2 P q¢1h|+lzh1+dgh3+ o

d2a;120 d2a:20 d2a3>0

= ¥ pH(< d), .

w0

ISBN 0-201-13501-9
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1.2 Infinite Product Generating Functions of One Variable s

If we are to view the foregoing procedures as operations with convergent
infinite products, then the multiplication of infinitely many series together
requires some justification. The simplest procedure is to truncate the infinite
product to J]i., (1 — ¢*)~*. This truncated product will generate those
partitions whose parts are among h,, h,,.. ., h,. The multiplication is now
perfectly valid since only a finite number of absolutely convergent series are
involved. Now assume ¢ is real and 0 < g < 1; then if M = h,,

M ” ©
Y eCH" D <[00 - ¢t < [T - ¢*)7! < .
j=0 i=1 i=1
Thus the sequence of partial sums ) )., p(“H"”, j)q’ is a bounded increasing
sequence and must therefore converge. On the other hand
-] n o0
LHL DY 21 - > T[(1-¢"""  as n- .
/=0 i=1 i=1
Therefore
€O @
YpCH, N =1 - ) =] =)
j=0 i=1 neH

Similar justification can be given for the proof of (1.2.4). N
COROLLARY 1.2 (Euler). p(0, n) = {2, n) for all n.

Proof. By Theorem 1.1,

S o0, " = [T (1 = g~

a2z 0 =1

and

L2, mg" =TI+ )

n20 =1
Now

= 2 (1l-g¢")_= 1
144" = = . (1.2.5)
nI;[l( 1 ) ul;ll (1 - Q") ul;-ll 1- qz._l

Hence

S WO, m" = ¥ p@, n)a",

n30 n30



6 The Elementary Theory of Partitions Chap. 1.3
and since a power series expansion of a function is unique, we see that p(0,n) =
p(2, n) for all n.” ]

COROLLARY 1.3 (Glaisher). Let N, denote the set of those positive integers
not divisible by d. Then

P(“Nysy” ) = p(“N”(< d), n)
Jer all n.

Proof. By Theorem 1.1,

S pN(< dymygt = 1S90

n>0 n=] (1 -q")
- I—] - 4"
(d'H)‘I"l
= Z P(“Nayy”,m)q",
n20
and the result follows as before. ‘ ]

There are numerous results of the type typified by Corollaries 1.2 and 1.3.
We shall run into such results again in Chapters 7 and 8 +#where much deeper
theorems of a similar nature will be discussed.

1.3 Graphical Representation of P artitions

Another effective elementary device for studying partitions is the graphical
representation. To each partition 1 is associated its graphical representation
&, (or Ferrers graph), which formally is the set of points with integral co-
ordinates (i, j) in the plane such that if 2 = (44, 4;,..., 4,), then (i, j) € g,
ifand only if 02 i > —n + 1, 0 € j € Aj;+ — 1. Rather than dwell on this
formal definition, we shall, by means of a few examples, fully explain the
graphical representation.

The graphical representation of the partition 8 + 6 + 6 + 5 + 1is

The graphical representation of the partition 7 + 3+ 3+ 2+ 1+ 1 is

. ISBN 0-201-13501-9
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1.3 : Graphical Representation of Partitions

Note that the ith row of the graphical representation of (4, 4,,..

contains 4, points (or dots, or nodes).

s An)

We remark that there are several equivalent ways of forming the graphical
representation. Some authors use unit squares instead of points, so that the

graphical representation of 8 + 6 + 6 + 5 + 1 becomes

Such a representation is extremely useful when we consider applications of
partitions to plane partitions or Young tableaux (see Chapter 11).

Other authors prefer the representation to be upside down (they would
say right side up); for example, in the case of 8 + 6 + 6 + 5 + 1

or [ J

Since most of the classical texts on partitions use the first representation

shown in this section, we shall also.

DerFINITION 1.8. If A = (4,,..., 4,) is a partition, we may define a new
partition A’ = (4,/,..., 4,) by choosing 4, as the number of parts of A that
are 2 i. The partition 4’ is called the conjugate of A.

® '

’



