v

BB FHUE T ESE
BIMESERRNZESRARARINAZFAEH

C++2Figit |
(B=HR W) '

PROGRAMMING IN C++ |

(Second Edition)

o

%
y "&
- i)

M Nell Dale
Chip Weems
Mark Headington

=L E EFHHF U W

Higher Education Press
@ Jones and Bartlett Publishers

D \}1_ A N
CH+FEF1Z1T
(SBZ”hR ZEPRRD
PROGRAMMING IN C++

(Second Edition)

Nell Dale
Chip Weems
Mark Headington

Jones and Bartlett Publishers

E=: 01-2001-1035 =

Programming in C++, 2nd ed.
Nell Dale, Chip Weems & Mark Headington

Original English Language Edition Published By
Jones and Bartlett Publishers, Inc.
One Exert Plaza
Boston, MA 02116
Copyright © 2001. All Right Reserved
This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macau)

BB &R B (CIP) &z

C+ + B : 33 / () BIR (Dale,N.) F. -2 Ji.
—JbE B A HE AL, 2001 (2003 FEED)

ISBN 7 — 04 — 010038 — X

[.C- M.#-- M.CigEs-#BF&it-%x N.
TP312

o [A 34 CIP B2 (2001) 58 19765 5

C+ + Bt GRR)

Nell Dale %

HAERTT HEHE R MHEHLE 010 — 64054588

H AENERXYMEESSS ®®Ei 8008100598
EREL4RES 100009] Ht http: // www. hep. edu. cn
£ E 010—64014048 http: // www. hep. com. cn
%2 % FERERERTH

B Rl JbEARSCERRIT

F A& 787%x1092 1/16 KR & 200145 A 1R

B % 48.75 Bl A& 200345 A 3 KELRI
F ¥ 1085000 E # 41.007T

245 A g T) T 3 5 1 T, O S N DR AR
JIRBAH BRI

i

Rl

j|lls

20 2K, LitENEEHARARENE ERFRHER, HERNEF. FE,
B, %y, Xth. TASFEANEETATRANEY, DhTXEHELEFLE
BRAMRZBFEEH T, #ANLEL, FEAH T hRAENEEZ L, WATH
ERANFBK K.

HTImrREREF LH#E, ERE (EREFHHL2EBEETANLEITXHA
Ey o, FHEY UEEAEF TN, KEFARY. EAHLEZ HHBEARX
(R, ZEFEVHERESKE LRI, ERERAV B, REFEZLEEIKE
EHELxtFHEGRkE. FLARBRLERATEERFREAATHZ D 54
%

EHEER, REZEFLVERABARAELE, E5ERAHAE ML, ZEL
Bk, HTHLABRERFEHKT, BELFAMRE EHRALHER, HHER
(- AMEAERELEIIERTHEEERAL, RALEELFZLHEREL
NATHATRE. Ak, HEXRBEEHFARERTHERFAFRKHENL, £K
HENRDGEIREERFREARNRF LA L, HEHEERMKERYE, R~
LEERE, MREDIEEFIRNEERFEREAEHAEYNHFETH. EANE
. RERELRGENER 2 HLH AR EANGEERFRBAREHME
BE, EHAEHEEYRAELEERFRBERRER PR IEEIMBHA WY
R HATHERSGER Y, UEEREETENHF L 5ERAEHAKTHZE, B
0,74 By T o8 4k 2 B K A B FAE KT

HT®kF EREE, ESN—SERAECEOAELHEN, —L¥RERARIH
M#EARFWER L, XEHEEHFTALEHEIHEERTERLEFREESNM SR
ER¥ AR ERN REHFF I AFREH RO RETE. A8
R % B0 RR B AT #AT B A K1

RKBHWEIHM T LRI, REXREBRNERBFREAR T LS
FRE£EBRNFATH LM ER LRITFN; RO ERABEAAHREEIER

BEERFMEARERARGERY, NESTFHE LN AR R HM R
BRIFF RO WA AYHUOREHS,, PDORMNENEN LN 5 RE RFEHM
PAetE 4

HERBEHFT MUY DR HAMBELEEIER, FLHAHTRA, EA
BEAM 2 BRMREPOE R R 0FEAAFOEME, REPITHMHELR, R
BEmERIE, WESNHES. EF. EFNIEHMoHFEBMHE.

BBt , REHE SN K AR B XTI 5| TR B, R E £ E A F £00
#5555 WR I,

HEHBEHT A
—0OO0—%4WH

To you, and to all of our students for whom it has begun
and without whom it would never have been completed.

ND. CW. MH.

he*first edition of Programming in C++ was prepared in response to requests

for a straightforward, no-frills introduction to C++. Although this second edi-

tion incorporates numerous changes, including reorganization of chapter mate-
rial, one thing has not changed: our commitment to the student. As always, our
efforts are directed toward making the sometimes difficult concepts of computer sci-
ence more accessible to all students.

This edition of Programming in C++ continues to reflect our experience that top-
ics once considered too advanced can be taught in the first course. For example, pre-
conditions and postconditions are used in the context of the algorithm walk-through,
in the development of testing strategies, and as interface documentation for user-
written functions. Data abstraction and abstract data types (ADTs) are explained in
conjunction with the C++ class mechanism, forming a natural lead-in to object-ori-
ented programming.

Changes in the Second Edition
The second edition incorporates the following changes:

e Conformance to ISO/ANSI standard C++. ISO/ANSI standard C++ (officially
approved in July 1998) is used throughout the book, including relevant por-
tions of the new C++ standard library. However, readers with pre-standard
C++ compilers are also supported. A new appendix discusses how to modify
the textbook's programs to compile and run successfully with an earlier com-
piler.

e An earlier introduction to classes, data abstraction, and object-oriented con-
cepts. Chapters 11-16 of the first edition have been reorganized into the fol-
lowing Chapters 11-15:

11 Structured Types, Data Abstraction, and Classes
12 Arrays

13 Array-Based Lists

14 Object-Oriented Software Development

15 Recursion

vi

Preface

The visible changes are the deletion of two chapters (“Records” and “Multidimen-
sional Arrays”), whose contents have been merged into Chapters 11 and 12, respec-
tively, and the movement of material on classes and data abstraction (covered in
Chapter 15 of the first edition) to Chapter 11. With this reorganization, the concept of
the C++ class as both a structuring mechanism and a tool for abstraction now comes
earlier in the book.

Introducing classes before arrays has several benefits. In their first exposure to
composite types, many students find it easier to comprehend accessing a component by
name rather than by position. Chapter 12 on arrays can now rather easily introduce the
idea of an array of class objects or an array of structs. Also, Chapter 13, which deals
with the list as an ADT, can now be handled in a better way, namely, encapsulating
both the data representation (an array) and the length variable within a class, rather
than the first edition’s approach of using two loosely coupled variables (an array and a
separate length variable) to represent the list. Finally, with three chapters’ worth of
exposure to classes and objects, students reading Chapter 14 can focus on the more dif-
ficult aspects of the chapter: inheritance, composition, and dynamic binding.

A natural result of this reorganization is that the chapter “Object-Oriented Software
Development” comes earlier in the sequence: Chapter 14 rather than the first edition’s
Chapter 15.

C++ and Object-Oriented Programming

Some educators reject the C++ language as too permissive and too conducive to writing
cryptic, unreadable programs. Our experience does not support this view, provided that
the use of language features is modeled appropriately. We have found that with careful
instruction in software engineering and a programming style that is straightforward,
disciplined, and free of intricate language features, students can learn to use C++ to
produce clear, readable code.

It must be emphasized that although we use C++ as a vehicle for teaching computer
science concepts, the book is not a language manual and does not attempt to cover all
of C++. Certain language features—templates, exceptions, operator overloading, default
arguments, and mechanisms for advanced forms of inheritance, to name a few—are
omitted in an effort not to overwhelm the beginning student with too much too fast.

There are diverse opinions about when to introduce the topic of object-oriented
programming (OOP). Some educators advocate an immersion in OOP from the very
beginning, whereas others (for whom this book is intended) favor a more heterogeneous
approach in which both functional decomposition and object-oriented design are pre-
sented as design tools. The chapter organization of Programming in C++ reflects a tran-
sitional approach to OOP. Although we provide an early preview of object-oriented
design in Chapter 4, we delay a focused discussion until Chapter 14. The sequence of
topics in Chapters 1 through 13 mirrors our belief that OOP is best understood after a
firm grounding in algorithm design, control abstraction, and data abstraction with
classes.

Preface

Features

Web Links Special Web icons found throughout the book prompt students to visit the
text’s companion Web site located at www. jbpub.com/dale for additional information
about selected topics. These Web Links give students instant access to real-world
applications of material presented in the text. The Web Links are updated on a regular
basis to ensure that students receive the most recent information available on the
Internet.

Goals Each chapter begins with a list of learning objectives for the student. These
goals are reinforced and tested in the end-of-chapter exercises.

Programming Examples Included in most chapters, programming examples present a
problem and discuss its solution. We then code the solution in C++. We also show
sample test data and output and follow up with a discussion of program testing.

Testing and Debugging These sections consider the implications of the chapter material
with regard to testing of programs. They conclude with a list of testing and debugging
hints.

Quick Checks These questions test the student’s recall of major points associated with
the chapter goals. Upon reading each question, the student immediately should know
the answer, which he or she can then verify by glancing at the answers at the end of
the section. The page number on which the concept is discussed appears at the end of
each question so that the student can review the material in the event of an incorrect
response.

Exam Preparation Exercises To help the student prepare for tests, these questions
usually have objective answers and are designed to be answerable with a few minutes
of work. Answers to selected questions are given in the back of the book, and the
remaining questions are answered in the Instructor’s Guide.

Programming Warm-up Exercises These questions provide the student with experience
in writing C++ code fragments. The student can practice the syntactic constructs in each
chapter without the burden of writing a complete program.

Programming Problems These exercises require the student to design solutions and
write complete programs.

Supplements

Instructor’s Guide and Test Bank The Instructor’s Guide features chapter-by-chapter
teaching notes, answers to the balance of the exercises, and a compilation of exam
questions with answers. The Instructor’s Guide is available to adopters on request from
Jones and Bartlett.

vii

viii

Preface

Instructor’s ToolKit CD-ROM Also available to adopters upon request from the
publisher is a powerful teaching tool entitled “Instructor’s ToolKit.” This CD-ROM
contains an electronic version of the Instructor’s Guide, a computerized test bank,
PowerPoint lecture presentations, and the complete programs from the text (see below).

Programs The programs contain the source code for all of the complete programs that
are found within the textbook. They are available on the Instructor’s ToolKit CD-ROM
and also as a free download for instructors and students from the publisher’s web site:
www.jbpub.com/disks. The programs from all the Programming Examples, plus several
programs that appear in the chapter bodies, are included. Fragments or snippets of
program code are not included nor are the solutions to the chapter-ending
“Programming Problems.” These program files can be viewed or edited using any
standard text editor, but in order to compile and run the programs, a C++ compiler
must be used.

Integrated Web Site This Web site features integrated Web Links from the textbook,
the complete programs from the text, and Appendix D entitled “Using this Book with a
Prestandard Version of C++,” which describes the changes needed to allow the programs
in the textbook to run successfully with a prestandard compiler.

Student Lecture Companion: A Note-Taking Guide Designed from the PowerPoint
presentations developed for this text, the Student Lecture Companion is an invaluable
tool for learning. The notebook is designed to encourage students to focus their energies
on listening to the lecture as they fill in additional details. The skeletal outline concept
helps students organize their notes and readily recognize the important concepts in each
chapter.

A Laboratory Course in C++, Second Edition Written by Nell Dale, this lab manual
follows the organization of the second edition of the text. The lab manual is designed to
allow the instructor maximum flexibility and may be used in both open and closed
laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and
Postlab. Each lesson is broken into exercises that thoroughly demonstrate the concept
covered in the chapter. A disk that contains the programs, program shells (partial
programs), and data files accompanies the lab manual.

Acknowledgments

We would like to thank the many individuals who have helped us in the preparation of
this second edition. We are indebted to the members of the faculties of the Computer
Science Departments at the University of Texas at Austin, the University of Massachu-
setts at Amherst, and the University of Wisconsin-La Crosse.

We extend special thanks to Jeff Brumfield for developing the syntax template
metalanguage and allowing us to use it in the text.

Preface

- For their many helpful suggestions, we thank the lecturers, teaching assistants, con-
sultants, and student proctors who run the courses for which this book was written, and
the students themselves.

We are grateful to the following people who took the time to review the manuscript
for the parent textbook, Programming and Problem Solving with C++, Second Edition: J.
Ken Collier, Northern Arizona State; Lee Cornell, Mankato State University; Charles
Dierbach, Towsen University; Judy Etchison, Collin County Community College; David
Galles, University of San Francisco; Susan Gauch, University of Kansas; Wagar Haque,
University of Northern British Columbia; liga Higbee, Black Hawk College; Jeanine Ing-
ber, University of New Mexico; Paula Jech, Pennsylvania State University; Hikyoo Koh,
Lamar University; I. Stephen Leach, Florida State University; Joseph Marti, College of
the Canyons; Kenrick Mock, Oregon State University; Viera Proulx, Northeastern Uni-
versity; Howard Pyron, University of Missouri—Rolla; Dennis Ray, 0Old Dominion Uni-
versity; Sujan Sarkar, Santa Rosa Junior College; Lynn Stauffer, Sonoma State
University; Greg Steuben, Rensselaer Polytechnic Institute.

We also thank Bobbie Lewis and Mike and Sigrid Wile along with the many people
at Jones and Bartlett who contributed so much, especially J. Michael Stranz, Amy Rose,
Jennifer Jacobson, Anne Spencer, and W. Scott Smith.

Anyone who has ever written a book—or is related to someone who has—can appre-
ciate the amount of time involved in such a project. To our families—all the Dale clan
and the extended Dale family (too numerous to name); to Lisa, Charlie, and Abby; to
Anne, Brady, and Kari—thanks for your tremendous support and indulgence.

N2

.D.
. W.
. H.

=

Overview of Programming and Problem Solving

1.1

1.2
1.3
1.4

1.5

Overview of Programming 2

What 1s Programming? 2

How Do We Write a Program? 2
What Is a Programming Language? 7
What Is a Computer? 11
Ethics and Responsibilities in the Computing Profession

Software Piracy 15

Privacy of Data 16

Use of Computer Resources 16

Software Engineering 17
Problem-Solving Techniques 17

Ask Questions 18

Look for Things That Are Familiar 19

Solve by Analogy 19

Means-Ends Analysis 19

Divide and Conquer 20

The Building-Block Approach 20

Merging Solutions 21

Mental Blocks: The Fear of Starting 22

Algorithmic Problem Solving 22
Summary 22

15

Xii { Contents

E C++ Syntax and Semantics, and the Program
Development Process

2.1

2.2

2.3

The Elements of C++ Programs 26
C++ Program Structure 26
Syntax and Semantics 28
Syntax Templates 30
Naming Program Elements: Identifiers 31
Data and Data Types 33
Naming Elements: Declarations 34
Taking Action: Executable Statements 38
Beyond Minimalism: Adding Comments to a Program 43
Program Construction 44
Blocks (Compound Statements) 46
The C++ Preprocessor 47
An Introduction to Namespaces 49
More About Output 50
Creating Blank Lines 50
Inserting Blanks Within a Line 51
Programming Example: Contest Letter 53
Testing and Debugging 57
Summary 59
Quick Check 59
Exam Preparation Exercises 62
Programming Warm-up Exercises 65
Programming Problems 67

3 Numeric Types, Expressions, and Output

341

3.2

3.3

Overview of C++ Data Types 70
Numeric Data Types 70
Integral Types 71
Floating-Point Types 72
Declarations for Numeric Types 73
Named Constant Declarations 73
Variable Declarations 74

25

69

3.4

3.5

3.6

3.7

3.8

Contents

Simple Arithmetic Expressions 74
Arithmetic Operators 75
Increment and Decrement Operators 78
Compound Arithmetic Expressions 78
Precedence Rules 79
Type Coercion and Type Casting 80
Function Calls and Library Functions 83
Value-Returning Functions 83
Library Functions 85
Void Functions 86
Formatting the OQutput 87
Integers and Strings 87
Floating-Point Numbers 90
Additional string Operations 94
The length and size Functions 94
The £ind Function 95
The substr Function 97
Programming Example: Map Measurements 99
Testing and Debugging 102
Summary 103
Quick Check 103
Exam Preparation Exercises 106
Programming Warm-up Exercises 109
Programming Problems 113

Program Input and the Software Design Process 115

4.1

4.2
4.3

Getting Data into Programs 116
Input Streams and the Extraction Operator (>>) 116
The Reading Marker and the Newline Character 119
Reading Character Data with the get Function 120
Skipping Characters with the ignore Function 122
Reading String Data 123

Interactive Input/Output 125

Noninteractive Input/Output 126

xiii

Xiv | Contents

4.4 File Input and Output 127
Files 127
Using Files 127
An Example Program Using Files 130
Run-Time Input of File Names 133
4.5 Input Failure 134
4.6 Software Design Methodologies 135
4.7 What Are Objects? 136
4.8 Object-Oriented Design 138
4.9 Functional Decomposition 138
Modules 140
A Perspective on Design 141
Programming Example: Stretching a Canvas 142
Testing and Debugging 147
Testing and Debugging Hints 148
Summary 149
Quick Check 150
Exam Preparation Exercises 151
Programming Warm-up Exercises 153
Programming Problems 155

5 Conditions, Logical Expressions, and Selection
Control Structures 157

5.1 Flow of Control 158
Selection 159
5.2 Conditions and Logical Expressions 159
The bool Data Type 159
Logical Expressions 160
Precedence of Operators 166
Relational Operators with Floating-Point Types 167
5.3 The If Statement 168
The 1f-Then-Else Form 169
Blocks (Compound Statements) 170
The 1f-Then Form 172
A Common Mistake 173

5.4

5.5

Contents

Nested If Statements 174

The Dangling else 176
Testing the State of an I/O Stream 178
Programming Example: Warning Notices 180
Testing and Debugging 183

Testing in the Problem-Solving Phase: The Algorithm Walk-
Through 184

Testing in the Implementation Phase 186
The Test Plan 191

Tests Performed Automatically During Compilation
and Execution 192

Testing and Debugging Hints 193
Summary 195

Quick Check 195

Exam Preparation Exercises 196

Programming Warm-up Exercises 199

Programming Problems 202

Looping 205

6.1
6.2
6.3

6.4

6.5

The While Statement 206
Phases of Loop Execution 208
Loops Using the While Statement 208
Count-Controlled Loops 209
Event-Controlled Loops 209
Looping Subtasks 212
How to Design Loops 214
Designing the Flow of Control 215
Designing the Process Within the Loop 216
The Loop Exit 217
Nested Logic 217 -
Designing Nested Loops 219
Programming Example: Average Income by Gender 220
Testing and Debugging 223
Loop-Testing Strategy 223
Test Plans Involving Loops 224

f

XV

| Contents

Testing and Debugging Hints 225
Summary 227

Quick Check 227

Exam Preparation Exercises 228

Programming Warm-up Exercises 231

Programming Problems 232

7 Functions 235
7.1 Functional Decomposition with Void Functions 236
Writing Modules as Void Functions 236
7.2 An Overview of User-Defined Functions 239
Flow of Control in Function Calls 239
Function Parameters 240
7.3 Syntax and Semantics of Void Functions 241
Function Call (Invocation) 241
Function Declarations and Definitions 242
Local Variables 244
The Return Statement 245
Header Files 246
7.4 Parameters 247
Value Parameters 248
Reference Parameters 249
7.5 Designing Functions 250
Writing Assertions as Program Comments 252
Documenting the Direction of Data Flow 254
Programming Example: Comparison of Furniture-Store Sales 257
Testing and Debugging 263
The assert Library Function 265
Testing and Debugging Hints 266
Summary 267
Quick Check 268
Exam Preparation Exercises 269
Programming Warm-up Exercises 275
Programming Problems 277

