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To you, and to all of our students for whom it has begun
and without whom it would never have been completed.

ND. CW. MH.



he*first edition of Programming in C++ was prepared in response to requests

for a straightforward, no-frills introduction to C++. Although this second edi-

tion incorporates numerous changes, including reorganization of chapter mate-
rial, one thing has not changed: our commitment to the student. As always, our
efforts are directed toward making the sometimes difficult concepts of computer sci-
ence more accessible to all students.

This edition of Programming in C++ continues to reflect our experience that top-
ics once considered too advanced can be taught in the first course. For example, pre-
conditions and postconditions are used in the context of the algorithm walk-through,
in the development of testing strategies, and as interface documentation for user-
written functions. Data abstraction and abstract data types (ADTs) are explained in
conjunction with the C++ class mechanism, forming a natural lead-in to object-ori-
ented programming.

Changes in the Second Edition
The second edition incorporates the following changes:

e Conformance to ISO/ANSI standard C++. ISO/ANSI standard C++ (officially
approved in July 1998) is used throughout the book, including relevant por-
tions of the new C++ standard library. However, readers with pre-standard
C++ compilers are also supported. A new appendix discusses how to modify
the textbook's programs to compile and run successfully with an earlier com-
piler.

e An earlier introduction to classes, data abstraction, and object-oriented con-
cepts. Chapters 11-16 of the first edition have been reorganized into the fol-
lowing Chapters 11-15:

11 Structured Types, Data Abstraction, and Classes
12 Arrays

13 Array-Based Lists

14 Object-Oriented Software Development

15 Recursion
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The visible changes are the deletion of two chapters (“Records” and “Multidimen-
sional Arrays”), whose contents have been merged into Chapters 11 and 12, respec-
tively, and the movement of material on classes and data abstraction (covered in
Chapter 15 of the first edition) to Chapter 11. With this reorganization, the concept of
the C++ class as both a structuring mechanism and a tool for abstraction now comes
earlier in the book.

Introducing classes before arrays has several benefits. In their first exposure to
composite types, many students find it easier to comprehend accessing a component by
name rather than by position. Chapter 12 on arrays can now rather easily introduce the
idea of an array of class objects or an array of structs. Also, Chapter 13, which deals
with the list as an ADT, can now be handled in a better way, namely, encapsulating
both the data representation (an array) and the length variable within a class, rather
than the first edition’s approach of using two loosely coupled variables (an array and a
separate length variable) to represent the list. Finally, with three chapters’ worth of
exposure to classes and objects, students reading Chapter 14 can focus on the more dif-
ficult aspects of the chapter: inheritance, composition, and dynamic binding.

A natural result of this reorganization is that the chapter “Object-Oriented Software
Development” comes earlier in the sequence: Chapter 14 rather than the first edition’s
Chapter 15.

C++ and Object-Oriented Programming

Some educators reject the C++ language as too permissive and too conducive to writing
cryptic, unreadable programs. Our experience does not support this view, provided that
the use of language features is modeled appropriately. We have found that with careful
instruction in software engineering and a programming style that is straightforward,
disciplined, and free of intricate language features, students can learn to use C++ to
produce clear, readable code.

It must be emphasized that although we use C++ as a vehicle for teaching computer
science concepts, the book is not a language manual and does not attempt to cover all
of C++. Certain language features—templates, exceptions, operator overloading, default
arguments, and mechanisms for advanced forms of inheritance, to name a few—are
omitted in an effort not to overwhelm the beginning student with too much too fast.

There are diverse opinions about when to introduce the topic of object-oriented
programming (OOP). Some educators advocate an immersion in OOP from the very
beginning, whereas others (for whom this book is intended) favor a more heterogeneous
approach in which both functional decomposition and object-oriented design are pre-
sented as design tools. The chapter organization of Programming in C++ reflects a tran-
sitional approach to OOP. Although we provide an early preview of object-oriented
design in Chapter 4, we delay a focused discussion until Chapter 14. The sequence of
topics in Chapters 1 through 13 mirrors our belief that OOP is best understood after a
firm grounding in algorithm design, control abstraction, and data abstraction with
classes.
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Features

Web Links Special Web icons found throughout the book prompt students to visit the
text’s companion Web site located at www. jbpub.com/dale for additional information
about selected topics. These Web Links give students instant access to real-world
applications of material presented in the text. The Web Links are updated on a regular
basis to ensure that students receive the most recent information available on the
Internet.

Goals Each chapter begins with a list of learning objectives for the student. These
goals are reinforced and tested in the end-of-chapter exercises.

Programming Examples Included in most chapters, programming examples present a
problem and discuss its solution. We then code the solution in C++. We also show
sample test data and output and follow up with a discussion of program testing.

Testing and Debugging These sections consider the implications of the chapter material
with regard to testing of programs. They conclude with a list of testing and debugging
hints.

Quick Checks These questions test the student’s recall of major points associated with
the chapter goals. Upon reading each question, the student immediately should know
the answer, which he or she can then verify by glancing at the answers at the end of
the section. The page number on which the concept is discussed appears at the end of
each question so that the student can review the material in the event of an incorrect
response.

Exam Preparation Exercises To help the student prepare for tests, these questions
usually have objective answers and are designed to be answerable with a few minutes
of work. Answers to selected questions are given in the back of the book, and the
remaining questions are answered in the Instructor’s Guide.

Programming Warm-up Exercises These questions provide the student with experience
in writing C++ code fragments. The student can practice the syntactic constructs in each
chapter without the burden of writing a complete program.

Programming Problems These exercises require the student to design solutions and
write complete programs.

Supplements

Instructor’s Guide and Test Bank The Instructor’s Guide features chapter-by-chapter
teaching notes, answers to the balance of the exercises, and a compilation of exam
questions with answers. The Instructor’s Guide is available to adopters on request from
Jones and Bartlett.
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Instructor’s ToolKit CD-ROM Also available to adopters upon request from the
publisher is a powerful teaching tool entitled “Instructor’s ToolKit.” This CD-ROM
contains an electronic version of the Instructor’s Guide, a computerized test bank,
PowerPoint lecture presentations, and the complete programs from the text (see below).

Programs The programs contain the source code for all of the complete programs that
are found within the textbook. They are available on the Instructor’s ToolKit CD-ROM
and also as a free download for instructors and students from the publisher’s web site:
www.jbpub.com/disks. The programs from all the Programming Examples, plus several
programs that appear in the chapter bodies, are included. Fragments or snippets of
program code are not included nor are the solutions to the chapter-ending
“Programming Problems.” These program files can be viewed or edited using any
standard text editor, but in order to compile and run the programs, a C++ compiler
must be used.

Integrated Web Site This Web site features integrated Web Links from the textbook,
the complete programs from the text, and Appendix D entitled “Using this Book with a
Prestandard Version of C++,” which describes the changes needed to allow the programs
in the textbook to run successfully with a prestandard compiler.

Student Lecture Companion: A Note-Taking Guide Designed from the PowerPoint
presentations developed for this text, the Student Lecture Companion is an invaluable
tool for learning. The notebook is designed to encourage students to focus their energies
on listening to the lecture as they fill in additional details. The skeletal outline concept
helps students organize their notes and readily recognize the important concepts in each
chapter.

A Laboratory Course in C++, Second Edition Written by Nell Dale, this lab manual
follows the organization of the second edition of the text. The lab manual is designed to
allow the instructor maximum flexibility and may be used in both open and closed
laboratory settings. Each chapter contains three types of activities: Prelab, Inlab, and
Postlab. Each lesson is broken into exercises that thoroughly demonstrate the concept
covered in the chapter. A disk that contains the programs, program shells (partial
programs), and data files accompanies the lab manual.
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