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Quantum Mechanics of Electronic Structure
of Simple Molecules.
By
Masao Kotani, KiMio OHNO and KUNIFUsA KAVAMA.
With 49 Figures.

I. Introduction.

The subject of discussion in this article is the quantum-mechanical theory of
simple molecules, i.e., systems consisting of N electrons and several nuclei,
forming a stable entity. As is well known, such molecules can rotate and vibrate,
and give rise to series of rotational and vibrational energy levels. Our main
concern in the present article is, however, with the motion of electrons in these
molecules, and rotations and vibrations of the molecules will not be dealt with
in detail.

1. Separation of electronic and nuclear motions. The study of the electronic
motion in molecules provides the basis on which the nature of chemical bonds
and the mechanism of various electronic processes can be theoretically under-
stood. Theory gives, for any fixed values of the distances between the nuclei
(we denote them symbolically by R), the electronic ground state and a series of
electronic excited states, with energies Eo(R) and E, (R), E,(R), ... respectively.
These E, (R) where £=0, 1, ... play the role of potentials for the forces acting
between the nuclei in the respective electronic states. The properties of chemical
bonds are usually derived from E(R) for the electronic ground state, and once
this E, (R) is known the treatment of rotation and vibration is not very difficult.
The procedure described here is based on the adiabatic approximation, or Born-
Oppenheimer approximation, according to which the large difference between nuclear
and electronic masses enables us to separate the electronic motion and the nuclear
motion to a very high degree of accuracy. An outline of the BORN-OPPENHEIMER
approximation will now be given briefly.

Let the masses, charges and coordinates of the particles concerned be denoted
as follows:

Particle ‘ Mass J Charge ] Coordinates
Nucleus a M, Zse | Ry (X,,Y,, Z,)
a=1,2,..., Q.
Electron % m —e | Ty(%p, Vg, zE)
R =1,2, u0y N,

Then the Schrédinger equation for our system is

Q N
Bod, w2
{—7 E_EZAﬁV}lp:Esv,

a=1 k=1 (1 1)

o2 Z,e? Z,Zye? ’
V— A __“q — e a‘y
1;: !1‘,-—1‘”,[ 1; I'rw"Ral ugb Rab ’
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2 Kotani, Ou~no and Kavama: Quantum Mechanics of Electronic Structure. Sect. 1.

where R,, = |R,—R,| and 4, and 4, are Laplacian operators acting on the
coordinates R, and =, respectively. By writing (1.1) we have neglected all
relativistic effects involving spin-dependent terms. This is sufficiently accurate for
the purpose of studying the properties of chemical bonds in lighter molecules.

Now, the nuclear masses are very much larger than the electronic mass, and
intuitively we may expect the nuclei to move much more slowly than the electrons.
Thus we should be able to study the motion of the electrons neglecting the motion
of the nuclei completely and treating their coordinates as parameters. Following
this idea, we set up the Schrédinger equation for the electronic motion, dropping
the nuclear kinetic energy terms from (1.1):

{ — 2 A+ V} el — Eel(R) Wl (1.2)
k

The eigenvalue of this equation is called the ““electronic energy”’, and is a function
of the internuclear distances R1. [V, and consequently E¢(R), contains the inter-

; ZZye? 1 : i 5
nuclear repulsion Z —2~2—so that E¢(R) is not strictly electronic. We shall call

rz i
Ee](R)__Z z;?be
a<b

equation (1.2) gives a series of discrete eigenvalues E((R)<E,(R)<E,(R)<---,
and the corresponding eigenfunctions are denoted by ¥g, ¥, P, .... For the
sake of simplicity, we assume that the eigenvalues are not degenerate, but this
is not essential for the following discussion. We can represent the functions
Ey(R), E;(R), ... as surfaces in a space spanned by E and R. These are called
the (adiabatic) electronic energy surfaces.

Now we consider the nuclear motion. The electronic energy E¢(R) discussed
above is the potential energy V averaged with respect to electronic coordinates
in the electronic state #, and intuitively we expect ES (R) to play the role of the
potential energy for the motion of the nuclei. Written wave-mechanically, this
amounts to assuming the following Schrodinger equation for the nuclei:

{__ 7;:2%:_ + E9 (R)} Ynuel — F oucl (1.3)

the “purely electronic energy”’.] In general, the Schrédinger

In the following, let us confine ourselves, for simplicity, to the case of the diatomic
molecule. Then Eq. (1.3) can be dealt with as follows: Since the potential contains
only R,—R,, it is convenient to transform coordinates from R,, R, to R; and R,
where

_ MR, + M, R,
R;= MM, (centre of mass),
R=R,—R, (relative coordinate).

We are not interested, however, in the motion of the molecule as a whole, so
that ¥™! may be assumed as a function of R only, and E¢ is a function only of
the magnitude R of the internuclear distance. Thus we have

52
{___ —z_ﬂ A + Eel(R)} Tnucl — E Tnucl’ (,‘ 4)

1 There are

—=1) . . .
% internuclear distances in all. However, most of them are redundant
and only 3Q —6 (3Q — 5 for linear molecules) of them are necessary to determine Eel(R),
since 3 Q is the number of degrees of freedom of the Q nuclei and Eel clearly does not depend
nothe three coordinates which specify the position of the centre of mass of the nuclear system
uro on another three (two for linear molecules) which determine the spatial orientation.
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where A refers to the relative coordinate R, and M is the reduced mass
=0 (1.5)

The problem (1.4) is essentially the same as the problem of a single particle
of mass M subject to a central potential E¢(R) from a fixed point. In order to
solve it we introduce spherical coordinates R, ®, @ for R, and put

Wnucl f(RﬁY(@, Qi) A (16)
Physically f(R) describes the molecular vibration, while Y (@, @) represents the
state of rotation. In order that (1.6) may satisfy (1.4), Y(@, @) must be spherical
harmonics of a certain order J:

Y(O, ®) = Y cy, PMi| (cos O) eiMs®, (1.7)
My

The order ] determines the magnitude of the angular momentum of rotation
as i ]/ J(J+1). By means of the differential equation satisfied by the spherical
harmonics, we can derive from (1.4)
the wave equation to be satisfied
by f(R): S5 310

{— 237 255 TEUR) + \—t /M

2M dR

2 (1.8
+ PN 1R = B ). Sy

In case stable binding occurs 7

in the electronic state #n, EZ(R)
must have a minimum at some
positive value R, and the inter-
nuclear distance R oscillates in
the neighbourhood of R,. According %

to (1.8) the potential energy of this i —
one-dimensional motion is ES(R) -+

,7‘22]1(‘{%21),,ofwhichthesecondterm I P 5 G 1 ﬁ}w

comes from the centrifugal force due
to rotation. If the rotational quan- Jreo
tum number [ is not very large, the
centrifugal potential is very small Fig. 1. Schematic dira(l)gt:?;% oflilectlronic, vibrational and
compared with EZ(R), at least for e

Lnergy

§:&,

} v=2

2
R=<R,, and may be treated as an additive constant 7?‘_2]7(‘;%2}1 . This means that

the effective potential is just the potential ENR) for the nonrotating state
displaced by a constant.

On the assumption that E¢(R) has a minimum for R =R,, which is not too
shallow, the wave equation gives a finite number of discrete levels whose eigen-
functions and eigenvalues are

fnu](R) and Env]; v=0,1,2,....

If the centrifugal potential may be regarded as a constant, f,,,(R) does not
depend on J and E,, 7 takes the form '

€ vi I J+1
Env] == Enl (RO) +En15) + ) *2]‘1(1411’?3’2 . ’ ('19)
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Here the second and the third terms are called the vibrational and rotational energies
respectively. If the shape of the potential Ej/(R) near the minimum is -assumed

EZ"(R
to be parabolic, the vibration is harmonic with circular frequency w, = ]/ M(—) 3
and the eigenvalues are given by the familiar expression

ER=ho,(v+3). (1.10)

Eyr —1%w, is the energy of zero-point vibration, in which the root-mean-square
values of momentum and displacement (coordinate) are related by HEISENBERG'S

uncertainty principle. The blndmg energy of the molecule under consideration is
Eel _ {Eel + vab (,1 1 1)

In the present article, however, we use the word ““binding energy’ in the sense

of E¢(00) —Eg(R,), that is, the depth of the potential minimum measured from
its value at R=oo, and denote it
by D.

o The quantity (1. 11), which is smaller

than D by E} = 1hw,, is referred to
as “dissociation energy’’.
It is sometimes convenient to rep-

resent EY(R) by an analytical expres-
Dsssointin i d/ﬂy By sipn, for whic_h the vibrational Schro-
Erergy dinger equation (1.8) can be solved
exactly. The most usual method is to
use MORSE’s formulal

brergy

——————— - EJ(R) — E (R,)
vib 0 0 0
}é”————----__-_ =D{1 _e—ﬂ(R—R.,)}z_} (1.12)
4 ’;!7 R This expression does not represent the
Fig. 2. Potential energy curve. behaviour of E(e)l (R) near R=0 Correct]y‘

but this is not serious because f(R)
vanishes almost completely near R =0. The curve corresponding to (1.12) is
called the Morse curve.

In order to construct the Morse function for a given electronic state of a
given diatomic molecule from empirical data, we have to find the values of
three parameters: D, R, . D can be obtained by adding the zero-point energy %A,
to the observed “‘dissociation energy”’, R, can be determined from the separation
of rotational energy levels, and g is related to known quantities through the

relation o

This is derived from (1.12) by equating the curvature of E§ (R) at R, to M w3.
Returning to our original problem, we have to prove the following
Theorem. The eigenfunctions of (1.1) are given by

Y — Yel, Ynucl (114)

provided that quantities of order (%)i can be considered negligible compared to

unity. The corresponding eigenvalue E is the same as that of the nuclear wave
equation (1.3).

! P. M. MorsE: Phys. Rev. 34, 57 (1929).
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Proof!: It is easy to see that the product function (1.14) actually satisfies (1.1)
if one is allowed to put

2 —n 1 2 nucl
— 4,9=94.(— AP ) i
, g
and a similar relation for — —— a4, 7.
2 M,

However, this is not exact, because ¥® contains nuclear coordinates as para-
meters; the exact expression is as follows:

(4 3 n? € nuc!
— o 4. = (= 4, 9) — 5 (grad, P'Y) - (grad, P + -

_'_(_zrl_[;Aa'}Iel)_y'/nucl.

The reason why the second and third terms on the right side of (1.16) may be
neglected is found in the fact that ¥™u! varies with the nuclear coordinates much
more rapidly than ¥ does. As an estimate of the order of magnitude, differen-
tiation with respect to a coordinate may be considered as a multiplication by a
certain quantity A of the dimension of a reciprocal length. Since Eq. (1.2) contains
no other constants than %?%/m and e, the multiplicative constant A for the elec-
me?
72
radius). However, A for the nuclear function ¥™¢! is much larger. This can be
seen in the following way: ¥ contains the vibrational function f(R), which is
confined essentially within the classical amplitude of vibration. If we denote
this by /, then 2 for ™! is roughly 1/I. From HEISENBERG’S uncertainty relation,

tronic wave function ¥ must be of the order of = ‘% (Reciprocal Bohr
H

ZN%, where p is some average value of the absolute value of linear momentum.

For the purpose of estimating p we put

P CEY(RyL 1) — ER) ~ B4 (Ry) 22,

2M
4 2 p4 3 .8
Eel,,(RO)Nme e | mie
h? At he
These relations give
M\t m e2
P N(W) no

This shows that A for ¥nuel is (M/m)t times larger than A for ¥¢. This is what
we desired to prove.

Furthermore we can easily estimate the order of magnitude of electronic,
vibrational and rotational energies. The order of magnitude of electronic
energy [absolute Yalue of E°(R), energy differences between different electronic

(4
¥
built from the universal constants contained in the wave equation (1.2).

states, etc.] is

, which is the unique expression of the dimension of energy

. . . 2 5
The vibrational energy is of the order of % ~ (ﬁ—)?%{ while the rotational energy
; h? 4 i . ‘ b

is May ™ % %— . These results give us some idea of the spacing of various

! The proof will be given only for the case of diatomic molecules. The reader is referred
to BorN and OPPENHEIMER’S original paper for a thorough and more general treatment,
M. Bor~ and J.R. OPPENHEIMER: Ann. d. Phys. 84, 457 (1927)
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energy levels. Up to this point, our specific proofs and explanations have been
confined to the case of diatomic molecule but, as we can easily see, most of the
results hold good also for general polyatomic molecules.

In the present article we deal almost exclusively with the electronic Schro-
dinger equation, so that it is very convenient to use the unit system in which
the electronic mass, m, the elementary charge (the absolute value of the elec-
tronic charge) ¢ and (27)' times PLANCK’S constant, 7%, are reduced to one.
This unit system is called the atomic system. The best values available at
present of these atomic constants seem to be those determined by J.W.M.
DuMonp, E.R.CoHEN et al. from carefully selected high precision measurements
related to atomic constants!. Those values are as follows:

m = (9.1083 - 0.0003) X 10728 g,
e = (4.80286 + 0.00009) x 10 W e.s.u.,
h = (1.05443 4 0.00004) X 10727 erg sec.

Some of the derived units in this system are given here:
72
(length)  ay, = %:_2 = (5.29172 4 0.00002) X 10~ cm,

(energy) 2Ry hc= m—f = (4.35916 4+ 0.00014) X 10 erg,

h
" h3
(time) o = (2.4189 + 0.0002) X 10717 sec,
2
(velocity) - = (2.18767 = 0.00006) x 108 cm/sec.

Another important constant ¢, the light velocity in vacuum, is not used in our
“atomic units”’, but is essential for relativistic effects:

¢ = (2.997930 4- 0.000003) x 10 cm/sec.

The ratio of the velocity 2/ to ¢ is the so-called fine structure constant:

2
o= 7% = (7.29729 =+ 0.00003) X 1073
In molecular physics the energy is frequently expressed in electron volts (ev)
and in wave-number units (cm™), and in the literature in chemistry the thermal
unit kcal/mol is widely used. The following table will be useful for conversion
between any two of these units.

Table 1. Relation between vavious units of energy.

‘ in a.u. 1 inev ‘ incm™! ‘ in Cal/mol 2 in erg
1 a. u. 1 [ 27.20976 | 2.194746X10% | 6.27709X 102 4.35916 x 10711
1ev 0.0367515 1 8.06603 x 103 23.0692 1.60206 X 10712

1 cm™! 4.55634 %1076
1 Cal/mol | 1.59310% 1073
1 erg 2.29402 X 1010

1.23977 X 1074 1 2.86005% 1072 | 1.98618 X 10716
0.0433478 ‘ 3.49644 X 102 1 6.944 56 X 10714
6.24196 X 10 | 5.03479 X 10" | 1.43998 X 1013 1

1 Conen, DuMonD, LavToN and RoLLETT: Rev. Mod. Phys. 27, 363 (1955). — E.R. COHEN
and J.W.M. DuMonD: Vol. XXXV of this Encyclopedia. — Conen, CRowE and DuMonND:
Fundamental Constants of Physics. New York: Interscience Publishers 1957.

? The Calorie is defined as 4.1840 joule.
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If the energy and coordinates are measured in atomic units, the Schrédinger
equation for the electronic motion in molecules is written as follows

Z, Z4Z, _
(=Xt S - Sl v—rm e, 4y

i<k a<b

Here we have dropped the superscript el to ¥ and E(R). This equation is the
starting point for the developments to be described in the present article. |7, — 1|,
|7, —R,| etc. are sometimes written as Yik» Yar €tC., TESpECtively.

2. Symmetry groups of molecules. When we deal with the electronic structure
of molecules neglecting the kinetic energy of nuclei (adiabatic approximation), the
nuclei are regarded simply as centres of force, and the Hamiltonian of the
electron system of each molecule has the same spatial symmetry as the nuclear
skeleton of the molecule. This spatial symmetry is described by the assembly of
geometrical operations, such as rotations, reflections, in- /'
version, rotary reflections, etc., which have the effect of per-
muting equivalent nuclei among themselves and which l
leave the nuclear architecture of the molecule unchanged. p()
These geometrical operations are called “symmetry opera-
tions” of a molecule, and the assembly of all symmetry g
operations of a molecule is said to form the “symmetry

group” of this molecule.
For the full explanation of the mathematical theory of
the symmetry group the reader is referred to JAGODZINSKI'S

article on Crystallography (Vol. VII, Part 1): we describe
here briefly only those aspects of the theory which are needed i a:Rotatlonaabontianes
in our molecular theory. '
Consider a molecule, and suppose that all the nuclei of this molecule are
held fixed, usually at their respective equilibrium points. Let P, Q, ... denote
symmetry operations allowed by this nuclear configuration. If we first apply P
to the molecule, and then apply Q to the result of operation P, the result is equi-
valent to that of a single operation, which is called the product of P and @, and
is denoted by QP. Since the nuclear framework remains unchanged by each
of P and (), the same holds for the product QP, so that the product of two sym-
metry operations is a symmetry operation. The multiplication of operators is
not necessarily commutative: PQ==QP, but is always associative P(OR) =
(PQ)R. Every Ssymmetry group contains the particular operation E (identity),
which leaves all points unmoved; E satisfies EP = PE — P with any operation P.

to 4 is also a symmetry operation of the same molecule, and is denoted by P
(reciprocal of P). The equation PP1= P-1P — F holds for any P.

An operation P of a symmetry group ® is said to be conjugate to another
operation Q(€®) when there exists at least one operation S @ satisfying P —
SQS. Since P = SQS gives Q = STP(S7), and since S also belongs to &,
the relation of being conjugate is a mutual (reversible) one. If P is conjugate
to both Q and R, O and R are mutually conjugate (transitivity), the set of all

Into a certain number of classes. If P is a rotation of angle @ about an axis J,
and / is displaced to /’ by operation S, operation SPS is the rotation through
the same angle ¢ about the axis V. Similarly, if P is a rotary reflection, SPS-1
is also rotary reflection through the same angle, in which the reflecting plane
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as well as the rotation axis are displaced according to the operation S. In general,
we can say that two conjugate operations P, Q are operations of the same char-
acter, and differ only in their orientation in space; and the rotation axes and/or
reflection planes of two conjugate operations are equivalent in the sense that
there exists an operation S(€®) which transforms the axis and/or the plane

of P into those of Q. In short, we may say that conjugate operations are equi-
valent.

Example 1. Group C,,. Triangular pyramidal molecule. NH;, CICHj, etc.
We assume that H; forms a (horizontal) regular triangle, and that the N nucleus
is situated at a point above the centre of gravity of H;. The symmetry group
consists of the following 6 operations,

E, identity,
0,(7), o,(7), o,(n), reflections through the plane containing the main sym-
metry axis / and passing through a, b, ¢ respectively,

27 2n A 27
}1 @ (T) G (— T)’ rotations of angle -+ =3 and
|' - zTn about the axis /.

These 6 operations are classified into 3 classes:

E, {0,(7), 03 (7), 0. ()}

. and
27n 27m
cf). o2}
{3 3
J Table 2

PQ E O oy Gc C, C_
! E E o0, o0 o, C, C_

a I [ opb, E C, C_ o, 0y
H Op gy C. E C+ o, O,

! o, | o, C, C_. E o o,

| Cy C, o, 0, 0, C_ E
Fig. 4. Equilateral triangular pyramid. cC_| C. oy, o0, 0, E C,

We give the so-called multiplication table for C,, in Table 2. In the table g, (m),

G (727373>, ... are abbreviated as ¢,,C, ....

Example 2. Group T;. Tetrahedral molecule. CH,, etc. We assume H,
to form a regular tetrahedron and C to be at its centre. The symmetry group

is the “Tetraederdrehspiegelungsgruppe”, consisting of 24 operations. They are
classified into § classes:

E,

2
C ( ;1) and C (— 23l> around each of four triple axes (CH,, CH,, CH,, and CH,).

_ G, (n), G, (n),_ C.(m). Rotations of angle z around straight lines connecting
rmdpomts of pairs of non-intersecting edges. We have 3 pairs, and 3 straight
lines are orthogonal among themselves. These are chosen as x, ¥ and z axes.

Oabs Oacs Oaar Opar Ogq- Reflections through planes containing one edge and
the centre of the tetrahedron.

S$3, 52,55, S5, S#, S;. Rotations of angle ig' around the x axis followed by
reflection through the yz plane. Similarly with the v and z axes.
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Example 3. Group C,,,. Linear asymmetric molecules NO, HCN, etc. We
take the straight lines passing through all nuclei as the z axis. The group contains
an infinite number of operations.

Class Operations
£ E .
C(L9) C(p), C(— @) (2 operations)
C(m) C(m) (1 operation) )
oy () reflection through a plane containing the z-axis (co operations),

o is the azimuth of the normal to the plane

Example 4. Group D,,;. Linear symmetric molecules N,, OCO, etc. We take
the Cartesian xyz axes in such a way that the z axis coincides with the molecular
axis and the origin at the centre of symmetry. The classes are as follows:

Class 1 Operations
E E
C(+ @) Clg), C(—eq) )
C(m) rotation through the angle 7z around the z-axis
oy (o) reflection through a plane containing the z-axis
inversion through the origin
Ry rotations through the angle zx around any straight line passing

through the origin and perpendicular to the z-axis, the azimuth
of the line is «

S(q) | S(®). S(—g@):C(), C(— ) followed by o},
o reflection through the xy-plane

3. Symmetry properties of electronic wave functions in molecules. We now
define the operation of symmetry operators on electronic wave functions of mole-
cules. Consider a symmetry operation P and a wave function iy, Ty oo, Ty).
If the operation P displaces the point # to point 7/, in particular », to 7}, 7, to
Ty, ..., then ¥'(r;, vy, ..., ry)=P¥(r;, vy, ..., ry) is defined by the identity

Py, e, ry) =Py, ry,...,1ry). (3.1)
In other words, ¥ is the same function as ¥ if the former is viewed from the
coordinate system 2’ and the latter from X, X’ being obtained from X by the
application of operation P to the fundamental vectors of the coordinate system.
The function PY¥ is, as it were, internally the same as ¥, and is different from ¥

only in external orientation in space, so that the scalar product of two wave
functions is not altered by applying the same symmetry operations to both:

[ W dv= [ P W av, (3.2)
where
Y| = P¥,, ¥, = PY,.

If P displaces , to #;, and Q shifts 7; to 1}/, the functions ¥, ¥’ = P¥ and
V"= Q¥ are related according to

Pl vy, ) =W, )
= Y(r,r,, o).

Now, the product operation R = QP displaces »; directly to r;’, so that we have
¥ =RY. This proves that

(@P)¥ =Q(PY). (3-3)
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The important use of symmetry operators in molecular quantum mechanics
consists in deriving from one solution of the Schrédinger equation other solutions
(eigenfunctions) of the same energy (eigenvalue). The electronic wave function ¥
of a molecule can, in principle, be obtained by solving the Schrédinger equation

HY —EY (3.4)

for the system of (say, V) electrons moving in the Coulomb field due to atomic
nuclei, and exerting Coulomb repulsions upon each other. Let the symmetry
group of this molecule be ®, and consider a symmetry operation P contained in
®. Since the Hamiltonian#is invariant under the transformation P, P21 # P — #
so that we have P#’'=P. By applying P to (3.4), we find that ¥'= P¥
satisfies the same Schrédinger equation as ¥ with the same eigenvalue E. Thus
from (3.4) it follows that

HY =EP". (3.5)

If E is non-degenerate and there exists only one independent solution for the
value of E, ¥ must be a constant multiple of ¥':

Y=y (3.6)

Since ¥ and ¥’ have the same normalization integrals, # must be unimodular:
|#| =1. In the more general case in which E is a degenerate eigenvalue, we
have a finite number (say, f) of linearly independent solutions Y, %, ..., ¥and
the general solution of (3.4) for this particular value of E is a linear combination
of these f ¥’s. As we have seen above, the functions P¥ are also solutions of
(3-4) for the same value of E, so that we must have

f
PY.=>u,;¥, +t=1,2,...,f1 (3.7) -
F=1

In this way we obtain an f-dimensional matrix

U(P) = (u;(P)) (3-8)
for each P. If we apply the operator Q to (3.7), we have by (3.3)

i

(QP) ¥ =23 { > 1(Q) 1: (P} . 3.9

If R=QP, (3.9) must be the same as
7
RY =3, (R)Y, (3.10)
so that we obtain, by equating the coefficients of ¥, on the right-hand sides,

f
uy; (R) :kZ wyy, (Q) wy; (P),
or in matrix notation o
UR)=U(Q)-U(P). (3.11)

Thus we obtain a matrix U(P) for each operation P, and these matrices satisfy
the same multiplication relations as the operators themselves. Mathematically
these matrices are said to form a (matrix) representation of the symmetry group.
We denote representations by the symbol I, and distinguish different represen-
tations by subscripts as 13, I3, etc.
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If ¥, %, ..., ¥ constitute an orthonormal set
(Ilvwlpy) EfTi*Tjdv :6i7'» (3.12)
the transformed functions P¥;, P¥,, ..., P¥,; do the same because scalar pro-
ducts (¥, ¥) are invariant under the symmetry operations:
(P, PH) = (¥, F) =6;. (3-13)
Substituting (3.10) into (3.13), and using (3.12), we find
Z;, i (P)* w,;(P) = 0,5, (3.14)
or in matrix form
UP)- U(P)=1, (3.15)

where T denotes the hermitian conjugate, and 1 denotes the unit matrix. Eqs. (3.14)
and (3.15) show that matrices U(P) are unitary, and in such cases the represen-
tation itself is said to be unitary.

In the absence of a magnetic field, eigenfunctions of the Schrédinger equa-
tion can be taken to be real. In this case, the matrices are also real, and, if the basic
functions ¥}, ¥,, ... are mutually orthogonal, the representation matrices are
obtained as orthogonal matrices. The representation is then orthogonal.

In this way, to each energy level E belongs a representation of the symmetry
group of the molecule. The spatial symmetry of wave functions is expressed
completely by the representation which belongs to this energy level. Accordingly,
we can classify energy levels of a molecule by means of the kind of representations
generated by the wave functions of this level. Then our next problem is: How
many different kinds of representations are possible for the group such as C,
and D,;, and how can we characterize each kind of representation ?

Before we can answer these questions, we have to explain the concepts of
equivalence and irreducibility of representations. If a set of matrices (with
dimension f>1)

uwp), U@Q)),... (3.16)

forms a representation I” of the symmetry group ®, we can derive from I" an
infinite number of representations in the following manner: Let T be a constant
f-dimensional square matrix whose determinant does not vanish, and put

UP)=T2UP)T, TEQ) =T UQ)T,.... (3.17)

o), T(),... (3.18)

forms also a representation of ®, because U(P)U(Q) =U (R) is an immediate
consequence of U(P) U(Q)=U(R):

U(P)-UQ) =TU(P)T-TUQ) T =T2UP)UQ) T
=T1UR) T =U(R).

Then the set

} (3.19)

Two representations, whose matrices are connected by a relation of the form
(3.17), are said to be equivalent. Since T can be chosen in an infinite number
of ways, we would have an infinite number of representations if we considered
equivalent representations to be different as long as their matrices were different.
For our present purpose, however, we should regard the equivalent represen-
tations as essentially the same, as shown by the following considerations.
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&

If the energy level E is degenerate (f = 2), the choice of f linearly independent
solutions ¥, ¥,, ..., ¥; can be made in an infinite number of different ways.

If i, s ces %) and (¥, E, T’,) are two orthonormal bases, they are
related through a unitary transformation:

_ /
7 :_thj,.llf].. (3.20)
=
Applying the operator P to (3.20), we have
E=1j=1

o Fi 1
PT, =31, P=3 3u,(P)4, %,
j=1

On the other hand, we can write, using the representation matrix U (P) generated
by the new basis

4 T oL, -
PY =3, (P)¥), =2 3 t,i,(P)W,.
h=1 k=1h=1

Equating the coefficients of ¥, in these two expressions for P%., we obtain

(F—/? R UP)T=TU(P),
1 where T"=(t;;). Since T is unitary 71 =T* exists,
4 7 [ and this relation can be written as
ur= _

4 T(P)=T1U(P)T. (3.21)

7 %) ||% This result shows that the representation I'{U(P),

J U(Q), ...} is equivalent to the representation

o _ -/ I"{U(P),U(Q), ...}. Thus, the representation associ-

Flg: 5 Re%ﬁ;ﬁﬁﬁ;‘,ﬁ”}ﬂaﬁrf" UP)of  ated with a definite energy level is changed into an-

other one which is equivalent to the former. Hence,
in order to consider the representation belonging to each energy level as definite
without mentioning the choice of basic functions explicitly, we should regard
equivalent representations as essentially the same.

The second point we have to discuss is the irreducibility of a representation.
If we take two representations I {U,(P), ...} and I}{U,(P), ...} of dimensions Iy
and f, respectively, and build the (f -+ f2)-dimensional matrix U(P) as shown in
Fig. 5, we obtain a new representation (I1+13) {U(P), U(Q), ...} of dimension
f =f+f.. However, such representations are simply sums of two representations,
and we need not give special treatment to them. In general, a representation,
all matrices of which can be brought into the form of Fig. 5 simultaneously by
a suitable choice of basic functions, is called reducible, and a representation for
which this is not possible is said to be irreducible. In the case of reducible re-
presentations, there exists a sub-set of functions Y. %, ... ¥, with 1< f, <},
which are transformed among themselves by all the operators of the group,
but this cannot occur in the case of irreducible representations.

The representation I" which belongs to an energy level E of a molecule is
in general irreducible. This can be seen from the following reasoning. If I" were
reducible, we could choose / basic functions ¥, A ¥, in such a way as to
put the representation matrices in the reduced form. Then, functions of the sets
{1, %, ..., ¥} and { ¥oi1s -, ¥} would be transformed separately, without
mixing functions of the two sets. Therefore, from the standpoint of the symmetry
of the molecule there would be no reason for the energy values of these two sets
of wave functions to be equal. If they happen to be equal, this equality is not
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required from the geometrical symmetry, but is quite accidental at least of our
present point of view and we talk of an ““accidental degeneracy”. Dlsregard!ng
such accidental degeneracy, therefore, we can assume that the representation
of each energy level is always irreducible.

The main problem we have presented above can be formulated as follows:
To determine the possible kinds of inequivalent, irreducible representations of
a given symmetry group. The answer to this problem is given by the following

Theorem. For any group consisting of a finite number of elements (operations)
the number of its inequivalent, irreducible representations is finite, and is equal
to the number of classes of conjugate elements in that group.

Further details concerning this fundamental theorem will be discussed in the
following subsections, where a convenient method of characterizing representations
will also be given.

As an example, let us consider the tetrahedral group ;. As was explained
in Example 2 of Sect. 2, T} has five classes, so that it should have five irreducible
representations, which we can actually construct in the following way: First of
all, every group has a trivial one-dimensional representation called the identical
representation in which we associate 1 with all elements. This representation
of T is denoted by 4,. We obtain another one-dimensional representation 4,,
by associating 41 with all pure rotations and —1 with all reflections and ro-
tary reflections. Introducing x, y, z axes as in Example 2 of Sect. 2, we find
that the transformations of x, y, z give a three-dimensional representation,
which we denote by T;. Again, by reversing the sign of matrices corresponding
to reflections and rotary reflections we obtain another three-dimensional
representation 7,. Finally the quadratic form ax®+by*4-c2? (a+b+c =0)
is transformed into itself by the operations of T;, so that we obtain a two-dimen-

. . . x%— g2 222 — 22 — 92 .
sional representation E by choosing, €.2. —— and — as basic func-
2 6

tions. The representation derived from E by reversing the sign of reflections,
etc. is found to be equivalent to E itself. In this way we have obtained five irre-
ducible representations 4,, 4,, E, 7;, and T,, and the fundamental theorem
asserts that any irreducible representation of T; must be equivalent to one of these.

For later use, we give here representation matrices in the particular coordinate
system explained above for typical elements, choosing one from each class:

Table 3
Element
Repr§sen- o B . T T
tation E l Ca (T”) ( C,(n) Jge ‘ SF
|
A, 1 1 1 1 | 1
A, 1 1 1 | —1 | —1
s |
1 )3\ | ‘ |
& 10 2 2 || (1 0) / (—1 o) (—1 0)
01 31 | 0 1, 01 01
Y {
o 100 001 (1 o0 0 1 o0 f 0—1 0
1 010 100 0—10]| [1 o o ot o o
001 010 0 01 LI | 00—t
- 100 001 —1 00\ | 0—1 o0 ] 0 1 o
2 010 100 | 0—101 -1 0 o0 -1 0 o0
001/ | 010 '\ o 01/ | o o0—1/ |\ o o 1




