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PREFACE

This book addresses the issue of translating a number of microscopic relaxation
mechanisms into a language adapted to the peculiarities of the dynamics of the
magnetization vector. It brings to light some previously unexplored, and some
unexpected, features of that dynamics. Only modest mathematical equipment is
employed throughout, but some familiarity with the simpler properties of ferro-
magnets at the level of advanced undergraduates or first year graduate students
is assumed. The book should also be of some interest to professionals in the
magnetic recording industry.

Magnetic phenomena have fascinated people for several millennia, but besides
their early use for determining the magnetic north, really major applications
date back no more than two or three centuries. A big advance in the harnessing
of magnetic phenomena went hand in hand with the growing understanding of
electromagnetism that culminated in the nineteenth century. More recent times
have seen a development of comparable import: the utilization of magnetism
in information technology. Magnetic recording and storing of immense amounts
of information in a small space, and at (so far) steadily diminishing cost has
been one of the two mainstays of information technology, with semiconductor
progress the other. The steady progress in magnetic recording technology is
based on material science on the one hand and on advances in engineering of
very small structures and particle assemblies on the other. As in many other
fields of applied science, empiricism holds sway, and one may ask what role, if
any, theory plays in the advance of magnetic recording. The most helpful kind of
theory, intended to provide direct support and guidance to experimentalists, is
based on principles described by very plausible equations that have proved their
worth in many contexts. Aided by computer power, equally plausible solutions
have been obtained in many cases, and often provide a reasonable fit to obser-
vation. As a result, the provenance of these equations is rarely questioned. This
is not at all unreasonable if the focus is on empirical advances in the recording
industry. Nonetheless a critical examination of the origin of the equations is in
order, if only as an insurance policy against unexpected aspects that may lurk
in future developments. In particular, the manner in which various relaxation
mechanisms enter the ultimate form of the equations deserves attention. In so far
as this relaxation has to do with only transfer of energy of magnetic motion to
nonmagnetic degrees of freedom of the substrate, it is obviously very inconvenient
to carry along these degrees of freedom in a calculation designed to match the-
ory to observation. Experiments almost always measure only the magnetization.
Accordingly, part of this book will be concerned with elimination of the unwanted
degrees of freedom. The result is an equation of motion for the magnetization
vector alone. However, a price must be paid: the resulting equation in general
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involves terms that are non-local in space and that involve the pre-history of
the magnetization up to the time of interest. Asymptotic expansions of this
result then determine the range of space and time variations over which these
effects are of importance. In Chapter 3, five different relaxation mechanisms are
considered in this light. Two of these describe the loss mechanism in magnetic
metals: one (an obvious one) involves the eddy currents induced by a moving
magnetization; the other, a quasithermodynamic one, is the result of ‘breathing’
of the Fermi surface owing to that motion. But there is one mechanism that
has been left out in this work: direct relaxation of the magnetization in metallic
ferromagnets owing to scattering of conduction electrons. In the opinion of this
author, a credible account of this mechanism in transition metals must await
clarification of the origin of their ferromagnetism. The same physics involved in
damping of the motion of the magnetization must be involved in establishing
the magnetization in the first place. Admittedly, it is tempting to describe the
magnetization in terms of a sophisticated mean field theory, and to attribute the
loss mechanism to inelastic electron scattering in this mean field, but to achieve
a credible self-consistency would not be easy.

Magnetic recording by its nature involves large motions of the magnetiza-
tion vector. Most purely analytic studies, on the other hand, deal with small
motions that allow linearization of the equation of motion. In the absence of an
adequate analytic theory far beyond the linearized limit and its lowest nonlinear
corrections, recourse is had to extensive computer simulations. Undoubtedly the
more thoughtful studies of this kind can yield important insights, but in this
book, the emphasis is on analytic solutions of the nonlinear equations with only
minimal computational assistance. To focus on the essential qualitative features
of large motions, only the simplest non-trivial model will be treated in detail:
a magnetic specimen with uniaxial anisotropy of crystalline and/or demagne-
tizing origin. Also, these solutions are restricted to only the lowest term in the
above-mentioned asymptotic expansion. Only one chapter is devoted to small
motions. Analyzed judiciously, these occasionally provide clues or correspon-
dences with the nonlinear situation. But, more importantly, linear theory and
the lowest nonlinear extensions thereof hold the promise of applications, such as
magnetic delay lines. These studies, very briefly sketched in Chapter 2, are based
on series expansions in powers of small motion amplitudes and have provided
elegant demonstrations (both theoretical and in the laboratory) of soliton-like
propagation of magnetic disturbances.

In this book, the magnetization field as a function of time and position is
treated as a classical quantity. This classical field is a gross manifestation of the
electronic spins and orbits and their largely quantum mechanical interactions
in a magnetic medium, but these nonclassical features enter a coarse-grained
description of the field only in the form of coefficients in its equations of motion.
Except in specialized investigations employing scanning tunnelling microscopy,
or magnetic force microscopy, of magnetic surfaces, measurements are coarse
grained because of the limited resolution of equipment. The grains should be
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considered large enough so that the spins in a grain centered on position Z say,
are coupled to yield a large, essentially classical magnetic moment vector M (Z, t)
of Z-and t-independent magnitude M well below the Curie temperature. This
limits the description to excitations of energies sufficiently low so that the cou-
pling of the spins within a grain is not significantly disrupted. Otherwise stated,
this description is applicable only to phenomena of sufficiently gentle spatial vari-
ations. Just below the transition temperature, the magnitude of the magnetic
moment is also variable and may have to be taken into account in so-called ther-
mally assisted recording. A short section at the end of Chapter 1 addresses this
matter. In theory, one can imagine quantum effects showing up even at the level
of a coarse description. For example, one may consider spontaneous depinning
of domain walls. However, the jury is still out on the question of submergence
of such observations in extraneous effects.

Quite often, observations deal with a magnetization field averaged over dis-
tances orders of magnitude larger than the coarse-grained distances referred to
above. Such a spatial average vector, call it M’ , is sometimes assumed to sat-
isfy dynamic equations originally designed for special cases in which there is
no significant distinction to be made between local and average values, as, for
example, in magnetic particles smaller than a typical domain wall width. But,
in general, M’ will satisfy equations with relaxation terms of a structure very
different from those appropriate for the local M field. The reason is that M’ is
in contact with many other modes of magnetic motion of essentially zero spatial
average that will detract from the magnitude of M'. The process by which any
one mode of magnetic motion loses energy through coupling to other modes of
magnetic motion will be called distributive damping in these pages. In contrast,
damping that results from transfer of energy to degrees of freedom of the host
medium will be called intrinsic damping, and is treated in Chapter 3. In samples
too small to support domain walls, it is the only allowed form of relaxation, but,
in general, distributive and intrinsic relaxation will occur side by side.

Relaxation processes cannot be adequately discussed without reference to the
closely related subject of fluctuations. This close relation is particularly evident
in the famous fluctuation-dissipation theorem. It relates the dissipative part of
the linear response of a system to the mean square fluctuations in the responding
degrees of freedom. A rigorous proof has been given only for linearized equations
of motion, classical or quantum mechanical. But for reasons that are not totally
clear (at least not to this author), when a statistical ensemble of systems with
infinitely many degrees of freedom is considered, a seemingly more general form
of the fluctuation-dissipation theorem appears. In such a system, the role of the
mean square fluctuations is played by the diffusion coefficients of the system.
In this formulation, linear response of any particular one of these degrees of
freedom does not appear to be a requirement. At least, this is the case if the
motion of the ensemble distribution obeys the Fokker-Planck equation. Chapter 4
deals with these matters with special reference to ferromagnetic systems, but,
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for the benefit of readers not especially familiar with this subject, some general
background material is included.

Chapter 5 is devoted entirely to the question of magnetization reversal in
small, effectively single-domain particles with given uniaxial anisotropy, and
sufficiently sparse so that their interaction is neglected, even though this may
not be quite justified in view of the long-range character of dipolar forces. The
treatment is based on the Fokker-Planck equation, transformed to look like the
Schroedinger equation of quantum mechanics. When the M vector is constrained
to move in a plane, that Schroedinger equation is the same as that for a particle
in a one-dimensional periodic lattice, a thoroughly explored subject. The main
interest from the point of view of magnetic recording is the graph of the field, the
coercive field, necessary to reverse the magnetization in a given time. The main
advantage of the method presented here is that it avoids the need for separate
considerations for applied fields greater than or less than the anisotropy field.
Most of the work assumes the easy magnetization direction to be parallel to
the applied field, but one small section deals with the case of misalignment of
these directions. The generalization to unconstrained rotation of M is discussed,
still for purely uniaxial anisotropy, using the fact that the azimuthal motion
of M about the field direction cannot seriously affect reversal times and may
be averaged out. In another section, the relation of the work presented here to
standard reaction rate theory and first passage time theories is outlined.

Chapter 6 consists of two parts. The first part examines the motion of a more
dense array of single-domain particles, interacting by dipolar forces. It is found
that, in applied fields less than the (still assumed uniaxial) anisotropy fields, the
motion is in general chaotic. Applied fields substantially exceeding anisotropy
fields tend to extinguish chaos, replacing it by ‘clean’, though multiperiodic,
motion. The chapter begins by presenting a simple integrable case: just two
particles with the line joining their centers parallel to the field applied along the
easy direction. The slightest deviation from this lineup results in chaos except in
sufficiently large fields. As one might expect, the motion of three such particles
is shown to be even more prone to chaos. From these examples it is concluded
that, in a sufficiently dense (but not too dense) array, general chaotic motion
should prevail at low applied fields, and that its characteristic time scale may well
be shorter than the time scale of intrinsic damping. Then chaos appears as an
extreme case of distributive damping and we speculate that intrinsic relaxation
may then be regarded as the ‘small friction’ scenario of Kramers’ diffusion model
of chemical reactions. In that scenario, only one variable is relaxing: the energy
of the system, the detailed motion of its particles becoming irrelevant. If our
speculation turns out to be valid, simplicity will have emerged from chaos.

The second part of the chapter deals with reversal in continuous media. As is
well known, chaos in a system of discrete particles does not necessarily carry over
to the limit of a system of infinitely small, but infinitely dense particles forming
a continuum. Usually new and different physics arises. The question of irregular
motion in a continuous medium must be considered ab initio. (The same may
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apply even to discrete, but extremely dense particle arrays.) Examining condi-
tions of integrability of the partial differential equations of the magnetization
field is obviously very hard. One might suspect that the instabilities of small
motions discussed in Chapter 2 portend stochastics of large motions, but no
evidence to this effect, experimental or theoretical, has come to light so far.
Therefore the rest of Chapter 6 is confined to purely deterministic methods.

In an infinite, perfect sample, magnetization reversal can occur by uniform
rotation, or by domain wall motion. In the case of rotation, the magnetization
vector everywhere turns from one easy direction to the opposite easy direction in
a magnetic field applied along the latter direction. On the other hand, reversal
by domain wall motion depends on the existence of a domain wall separating
regions of opposite magnetization direction prior to the switch. In that case,
some small region of the sample must already have its magnetization in the final
direction to be reached by the entire sample as the applied field drives the wall
along. In the case of rotation, the graph of magnetization versus field as that
field is cycled between positive and negative values exceeding the coercive field
is a rectangle: the hysteresis loop. In the case of reversal by domain wall motion,
that loop shrinks to a line: no hysteresis occurs.

However, real samples are finite, and even if they are free of imperfections,
these conclusions require major modifications, mainly owing to dipolar forces
as manifested by demagnetizing fields. These tend to render perfectly uniform
rotation unstable. A stable reversal process requires the magnetization field to
assume a distinctive non-uniform pattern. This pattern minimizes the effect of
the demagnetizing field, at the expense of introducing exchange torques set up
by non-uniformity. But, on balance, stable magnetization reversal will result.
Cycling the applied field still results in a hysteresis loop, but a more ‘skinny’
one than that corresponding to uniform rotation. In applied fields less than the
field equivalent of the total anisotropy barrier energy (crystalline and/or demag-
netizing), magnetization reversal can occur only with the assistance of thermal
fluctuations. In this range of applied fields, the theory for the ideal sample with
ideal boundary conditions parts company with a more realistic treatment. The
activation energy needed to overcome the barrier in the finite, but idealized sam-
ple is proportional to the total sample volume, contrary to observation. Instead,
the barrier is overcome only in the immediate vicinity of a nonuniformity in the
underlying physical properties, particularly at a surface. The activation energy
is proportional to the quite small volume of the imperfection. Once the magne-
tization on the far side of the imperfection is reversed, it provides the seed for
further reversal by domain wall motion.

Thus the switching speed of a sample large enough to allow domain wall
formation should be related to the speed of propagation of a domain wall. The
only available theories are based on the assumption of a uniform wall velocity.
As the result of this assumption, the partial differential equations describing
the motion are replaced by ordinary nonlinear differential equations, which then
describe the shape of the wall as viewed by an observer moving along with it.
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Much of Chapter 6 is devoted to the motion of a Néel domain wall in these terms,
with the rotation of the magnetization confined to a plane, as it might be in a
thin film. This problem has some formal similarities with propagation problems
in chemistry and biology. Permitted ranges of stable velocities are given in terms
of applied and anisotropy fields, but the actual final steady value of the velocity
cannot be determined without solving for the transient following launch of the
wall. That transient obviously does not allow replacement of a time rate of change
by a velocity times a spatial rate of change. Kolmogorov and co-workers have
succeeded in relating a final steady velocity to a certain class of initial conditions.
In the present problem, a plausible argument is presented for the speed of the
wall shortly after launch; quite possibly that speed will persist. One weak point
in the notion of a steady wave traveling with uniform velocity for ever is that it
does not account for its fate upon arrival at its destination. The author is not
aware of any literature addressing this question analytically. Here, an argument
is presented suggesting that, as the state of complete magnetization reversal is
approached, the speed of the wall steadily grows to a (formally) infinite value.

The moving Bloch wall is considerably harder to analyze, since it involves
both the azimuthal and the polar angles of the magnetization vector. There is
only one known analytic solution of this problem, that of L. R. Walker. It is a
tour de force, both elegant and exact, and for these reasons it is presented in
these pages. However, its singular character makes it hard to judge if it is in
some sense an isolated, not widely applicable triumph.

The motion of actual domain walls, even in ideal media, conforms with
these types of theories only in certain geometries and/or ranges of applied field
strength. For applied fields well above saturation value, they should be more or
less valid. In field values below saturation, the very concept of a wall velocity
becomes dubious, except in special geometries. The final section of Chapter 6
discusses the behavior of domain walls in applied fields below saturation. No
attempt is made to explore this subject in depth, and treatment is restricted to
domain walls in the form of sheets that render the problem effectively two dimen-
sional. In samples of dimensions larger than a typical domain wall, static domain
walls form owing to demagnetizing effects alone, without significant involvement
of the exchange field inside the walls. In the absence of an applied field, the
magnetization distribution in the sample arranges itself so as to result in zero
internal field also (any crystalline anisotropy field of course remains), resulting
in a particular domain wall configuration. In a finite subsaturating applied field,
the magnetization still attempts to shield the interior from the external field,
reducing the interior field to zero as far as possible (some field penetration must
occur at sharp edges or corners). As the applied field is increased adiabatically,
the wall configuration moves in such a way as to increase the size of domains
with magnetizations tending towards lineup with the field, pervading the entire
sample when the applied field reaches saturation value. This process can be ana-
lyzed rigorously for a certain class of sample shapes, and from that analysis some
physical conclusions may be drawn that allow a simple geometric construction
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for the general situation. When the external field is increased dynamically, a
purely analytic treatment of the wall motion becomes impossible, even for that
class of sample shapes. However, it is proposed that, in the dynamic case, the
development of the wall configuration, even if quite complex, the time depen-
dence is nearly the same as that of a primitive case, for which an exact solution
is presented. The reason why the usual concept of domain wall velocity is not
applicable here is simple: in the subsaturated case there is no length scale; con-
figurations and their movements depend only on sample shapes since exchange
length is not significantly involved. Standard wall motion theory on the other
hand depends on that length.

This book is focussed on analytic formulations of magnetic relaxation pro-
cesses on the one hand, and on ways of solving the resulting equations in their full
nonlinear form without significant resort to computer simulation on the other,
at least for simple cases. Unfortunately, this narrow focus did not allow inclu-
sion of certain highly topical subjects, such as relaxation processes in multilayer
structures, the physics of exchange bias, magnetization fields in constricted struc-
tures, proximity effects and spin polarized tunneling into nonmagnetic media,
etc. Hopefully, the methods adopted in this work will prove relevant in at least
some of these areas.
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1

THE CLASSICAL MAGNETIZATION FIELD

1.1 Introduction

At the time of writing, all applications of magnetically ordered materials can
safely avoid explicit reference to the quantum mechanical aspects of the under-
lying spin and orbital degrees of freedom of the constituent ions. Also, it is
not normally necessary to keep track of the atomistic character of the material.
The phenomena of interest are usually describable as spatial averages over many
lattice spacings. In such a description, the microscopic quantum aspects appear
only in the form of constants in the equations governing the statics and dynamics
of the magnetization. There are exceptions (for example magnetic force micro-
scopes) that probe the material on a more or less atomic scale. Also, with the
advent of nanoscience, intrinsically quantum mechanical phenomena that have
no classical limit (such as tunneling of the magnetization as such) may sooner
or later require attention. This book will largely be confined to a macroscopic
description in terms of a magnetization field as a continuous function of position,
governed by classical equations of motion.

We begin with an account of the plausibility of this point of view, at least for
magnetic insulators in which the ionic spins (or effective spins) may be considered
localized. At first sight, the case of metals would seem to lead to the classical
magnetization field more readily, since the itinerant character of the electrons
makes a quantum mechanical spin density field operator a logical starting point.
In fact, the transition to the classical field description of magnetic metals requires
rather advanced theoretical methods outside the scope of this work. For early
efforts in that direction, see Herring and Kittel (1951).! It is conceptually easier
to consider the case of magnetic insulators with a localized set {5’;} of N spins.
Let H denote their Hamiltonian, i.e. their total energy expressed in terms of the
S;. Their Heisenberg equations of motion are

ihdS; ) dt = (@,H)_ i=1...N (1.1)

with the right hand side denoting the commutator. The Hamiltonian H is always
a multinomial in the components S of S;, (o = 1,2,3). The commutation

1For a nonmagnetic electron gas, reducing the quantum mechanics to a more phenomeno-
logical description, such as Fermi liquid theory, has more recently been found possible using
renormalization theory (Shankar, 1994). For possible extensions to magnetism, see Chubukov
(2005) and Rech et al. (2006).
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relations of these components S§* of S; are
5287 — PSP = ihbijeapyS] 1.2
i 25 91 = UW0ij€apyo; (1.2)

Consider, for example, the commutator (S¢, (Sf )2)_ that might be encountered
during the evaluation of the commutator in equation (1.1). It is equal to

(87, 87)-80 + S7(57,80)- = iheagy (S7S? + S7S7)
= theagy (25?5? + iﬁegqasf)
= iheasy S] (d(s?)z/dsf’ + o(h)) .

Similar results hold for commutators of the S¢* with the higher powers and/or
products of spin components that occur in H. From this it follows that

dS;

dt

=~ OH
=—Si>(—_.+0h 1.3
o= o) (1.3)

]

As h — 0, this equation, though still in terms of operators, has the same form as
the classical equations of motion of magnetic moments associated with the spins.
Thus, (looking forward to eqn (1.4)), this obeys the correspondence principle,
and becomes a classical equation in the limit of large spins. (For large spins, the
right hand side of eqn (1.2) may be neglected compared with the quantities on
the left. The latter then commute, i.e. behave classically.) However, this is no
great comfort; in many materials the individual spins are not large. Thus, if we
desire a classical description of a coarse-grained magnetization field, we need to
examine the sense in which the spin may be considered large, even though the
constituent spins may be small.

This is made plausible as follows: A full quantum mechanical treatment of
the system would supply a correlation length of the spin system. At temper-
atures well below the Curie temperature, this correlation length will be large,
comprising n lattice sites, say, around position Z. Then over a region n?, the spin
orientations will hardly change from an average direction, <S(&)>. This aver-
age may thus be viewed as a single, rigid spin of magnitude n3S, independent of
T, with only very small fluctuations around this value. Similarly, its magnitude
should fluctuate in time with only small amplitude. A continuum field view is
then justified if n is large enough to comprise many spins, yet small on the scale
of distances over which the direction of the magnetization changes. The spin
system may then be represented by a magnetization field M (Z,t) of constant
magnitude M (z,t) practically equal to the saturation magnetization M at the
ambient temperature 7' < Tt.. The mathematics needed to justify this qualitative
argument is known as renormalization theory.



