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Preface

In 2008, November 23-28, the workshop of “Classical Problems on Planar Poly-
nomial Vector Fields ” were held in Banff International Research Station of Canada.
So called “classical problems”, it concerns with the following: (1) Problems on inte-
grability of planar polynomial vector fields. (2) The problem of the center stated by
Poincaré for real polynomial differential systems, asks us to recognize when a planar
vector field defined by polynomials of degree at most n possesses a singurality which
is a center. (3) Global geometry of specific classes of planar polynomial vector fields.
(4) Hilbert’s 16th problem.

These problems had been posed more than 110 years. Therefore, they are called
“classical problem” in the studies of the theory of dynamical systems.

The qualitative theory and stability theory of differential equations, created by
Poincaré and Lyapunov at the end of the 19th century had major developments as
two branches of the theory of dynamical systems during the 20th century. As a part
of the basic theory of nonlinear science, it is one of the very active areas in the new
millennium.

This book presents in an elementary way the recent significant developments
in the qualitative theory of planar dynamical systems. The subjects are covered
as follows: The studies of center and isochronous center problems, multiple Hopf
bifurcations and local and global bifurcations of the equivariant planar vector fields
which concern with Hilbert’s 16th problem.

We are interested in the study of planar vector fields, because they occur very of-
ten in applications. Indeed, such equations appear in modelling chemical reactions,
population dynamics, travelling wave systems of nonlinear evolution equations in
mathematical physics and in many other areas of applied mathematics and mechan-
ics. In the other hand, the study of planar vector fields has itself theoretical sig-
nification. We would like to cite Canada’s mathematician Dana Schlomiuk’s words
to explain this fact: “Planar polynomial vector fields and more generally, algebraic
differential equations over the projective space are interesting objects of study for
their own sake. Indeed, due to their analytic, algebraic and geometric nature they
form a fertile soil for intertwining diverse methods, and success in finding solutions
to problems in this area depends very much on the capacity we have to blend the
diverse aspects into a unified whole.”

We emphasize that for the problems of the planar vector fields, many sophisti-
cated tools and theories have been built and still being developed, whose field of
application goes far beyond the initial areas. In this book, we only state some im-
portant progress in the above directions which have attracted our study interest.
The materials of this book are taken mainly from our published results.

This book is divided ten chapters. In Chapter 1 we provide some basic results in
the theory of complex analytic autonomous systems. We discuss the normal forms,
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integrability and linearized problem in a neighborhood of an elementary singular
point.

In order to clearly understand the content in Chapter 2~Chapter 10 for young
readers, and to save space in the following chapters, we shall describe in more detail
the subjects which are written in this book and give brief survey of the historic
literature.

I. Center-focus problem

We consider planar vector fields and their associated differential equations:

Iy ZX(CE,:U), % :Y("E’y)a (E)
where X (z,v), Y (z,y) are analytic functions or polynomials with real coefficients. If
X, Y are polynomials, we call degree of a system (E), the number n = max(deg(X),
deg(Y’)). Without loss of generality, we assume that X (0,0) = Y (0,0) =0, i.e., the
origin O(0,0) is a singular point of (') and the linearization at the origin of (E) has
purely imaginary eigenvalues.

The origin O(0,0) is a center of (F) if there exists a neighborhood U of the
origin such that every point in U other than O(0,0) is nonsingular and the orbit
passing through the point is closed. In 1885, Poincaré posed the following problem.

The problem of the center Find necessary and sufficient conditions for a
planar polynomial differential system (F) of degree m to possess a center.

This problem was solved in the case of quadratic systems by Dulac who proved
that all quadratic systems with a center are integrable in finite terms. Actually
they could be shown to be Darboux integrable by the method of Darboux by using
invariant algebraic curves. Similar results were obtained for some classes of cubic
differential systems with a center. Darboux integrability is an important tool, al-
though not the only one. The problem of the center is open for general cubic systems
and for higher degrees.

Poincaré considered the above problem. He gave an infinite set of necessary and
sufficient conditions for such system to have a center at the origin. In his memoir
on the stability of motion, Lyapunov studies systems of differential equations in n
variables. When applied to the case n = 2, his results also gave an infinite set of
necessary and sufficient conditions for system (E) with X,Y polynomials to have a
center. (Actually, Lyapunov’s result is more general since it is for the case where
X and Y are analytic functions). In searching for sufficient conditions for a center,
both Poincaré and Lyapunov’s work involve the idea of trying to find a constant of
the motion F'(z,y) for (E) in a neighborhood U of the origin, where

F(w,y) :ZFk(l‘,y), (1)
k=2

F}, is a homogeneous polynomial of order k£ and F3 is a positive definite quadratic
form. If F is constant on all solution curve (z(t),y(t)) in U, we say that F is a first
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integral on U of system (FE). If there exists such an F' which is nonconstant on any
open subset of U, we say that system (E) is integrable on U.

Poincaré and Lyapunov proved the following theorem.

Poincaré-Lyapunov Theorem The origin of the polynomial (or analytic)
system (E) is a center if and only if in an open neighborhood U of the origin, (E)
has a nonconstant first integral which is analytic.

Thus, we can construct a power series (1) such that

% . = VE;(.’EZ + y2)2 e ‘/5(1:2 + y2)3 4ot 1/2k+1(m2 o y2)k+1 R (2)
with V3, Vs, -+, Vogy1, -+ constants. The first non-zero Va,41 give the asymptotic
stability or instability of the origin according to its negative or positive sign. Indeed,
stopping the series at F}, we obtain a polynomial which is a Lyapunov function for
the system (F). The Vaory1's are called the Lyapunov constants. Some people also
use the term focal values for them. In fact, Andronov et al defined the focal values
by the formula v; = A®(0)/i!, where A(® (pp) is the ith-derivative of the function
A(po) = P(po) — po, P is the Poincaré return map. The first non-zero focal value
of Andronov corresponding to an odd number i = 2n + 1. It had been proved that
the first non-zero Lyapunov constant V5,41 differs only by a positive constant factor
from the first non-zero focal value, which is A(2"+1)(0). Hence, the identification in
the terminology is natural.

In terms of the V5;11’s, the conditions for a center of the origin become Vo1 =
0, for all k = 1,2,3,---. Now V3,V5, -+, Vogs1, -+ are polynomial with ratio-
nal coefficients in the coefficients of X (z,y) and Y (z,y). Theoretically, by using
Hilbert’s basis theorem, the ideal generated by these polynomials has a finite basis
B1,Bs, -, B,,. Hence, we have a finite set of necessary and sufficient conditions
for a center, i.e., B; =0for i =1,2,---, M. To calculate this basis, we reduce each
Vok4+1 modulo <« V3, Vs, - -, Vor_1 >, the ideal generated by V3, Vs, - -+, Vog—1. The
elements of the basis thus obtained are called the Lyapunov quantities or the focal
quantities. The origin is said to be an k-order fine focus (or a focus of multiplicity
k) of (E) if the fist k — 1 Lyapunov quantities are 0 but the k-order one is not.

The above statement tell us that the solution of the center-focus for a parti-
cular system, the procedure is as follows: Compute several Lyapunov constants
and when we get one significant constant that is zero, try to prove that the system
obtained indeed has a center. Unfortunately, the described method has the following
questions.

(1) How can we be sure that you have computed enough Lyapunov constants?

(2) How do we prove that some system candidate to have a center actually has
a center?

(3) Do you know the general construction of Lyapunov constants in order to get
general shortened expressions for Lyapunov constants Vs, Vs, - - -

In Chapter 2 we devote to give possible answer for these questions.

In addition, we shall consider the following two problems.
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Problem of center-focus at infinite singular point

A real planar polynomial vector field V' can be compactified on the sphere as
follows: Consider the z,y plane as being the plane Z = 1 in the space R3 with
coordinates X,Y,Z. The center projection of the vector field V' on the sphere of
radius one yields a diffeomorphic vector field on the upper hemisphere and also an-
other vector field on the lower hemisphere. There exists an analytic vector filed
p(V) on the whole sphere such that its restriction on the upper hemisphere has
the same phase curves as the one constructed above from the polynomial vector
field. The projection of the closed northern hemisphere H* of S on Z = 0 un-
der (X,Y,Z) — (X,Y) is called the Poincaré disc. A singular point ¢ of p(V) is
called an infinite (or finite) singular point if ¢ € S! (or ¢ € S2/S'). The vector
field p(V) restricted to the upper hemisphere completed with the equator is called

Poincaré compactification of a polynomial vector field.

If a real polynomial vector field has no real singular point in the equator I's, of
the Poincaré disc and I'o, can be seen a orbit. All orbits in a inner neighborhood of
I’ are spirals or closed orbits, then I', is called the equator cycle of the vector field.
I'o can be become a point by using the Bendixson reciprocal radius transformation.
This point is called infinity of the system. For infinity, there exists the problem of
the characterization of center for concrete families of planar polynomial (or analytic)
systems. In Chapter 5, we introduce corresponding research results.

Problem of center-focus at a multiple singular point

The center-focus problem for a multiple (degenerate) singular point is essentially
difficult problems. There is only a few results on this direction before 2000. This
book shall give some basic results in Chapter 6.

II. Small-amplitude limit cycles created by multiple Hopf bifurcations

So called Hopf bifurcation, it means that a differential system exhibits the phe-
nomenon that the appearance of periodic solution (or limit cycle in plane) branching
off from an equilibrium point of the system when certain changes of the parameters
occur. Hopf’s original work on this subject appeared in 1942, in which the author
considered higher dimensional (greater than two) systems. Before 1940s, Andronov
and his co-workers had done the pioneering work for planar dynamical systems.
Bautin showed that for planar quadratic systems at most three small-amplitude
limit cycles can bifurcate out of one equilibrium point. By the work of Andronov
et al, it is well known that the bifurcation of several limit cycles from a fine focus
is directly related with the stability of the focus. The sign of the first nonvanishing
Lyapunov constant determines the stability of the focus. Furthermore, the number
of the leading V2;4+1’s(¢ = 1,2,---) which vanish simultaneously is the number of
limit cycles which may bifurcate from the focus. This is the reason why the inves-
tigation of the bifurcation of limit cycles deal with the computation of Lyaponov
constants.

The appearance of more than one limit cycles from one equilibrium point is called
multiple Hopf bifurcation. How these small-amplitude limit cycles can be generated?
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The idea is to start with a system (E) for which the origin is a k-th weak focus,
then to make a sequence of perturbations of the coefficients of X (z,y) and Y (z,y)
each of which reverses the stability of the origin, thereby causing a limit cycle to
bifurcate.

In Chapter 3 and Chapter 9 the readers shall see a lot of examples of systems
having multiple Hopf bifurcation.

II1. Local and non-local bifurcations of Z,-equivariant perturbed planar
Hamiltonian vector fields

The second part of Hilbert’s 16th problem deals with the maximum number H (n)
and relative positions of limit cycles of a polynomial system

dr dy
T A Pn(m7y)a dt -

dt
of degree n, i.e., max(degP, deg@) = n. Hilbert conjectured that the number of limit
cycles of (E,,) is bounded by a number depending only on the degree n of the vector
fields.

Without any doubt, the most famous one of the classical problems on planar
polynomial vector fields is the second part of Hilbert’s 16th problem. This a doubly
global problem: It involves the behavior of systems in the whole plane, even at
infinity, and this for the whole class of systems defined by polynomials of a fixed
degree n. Not only is this problem unsolved even in the case of quadratic systems,
i.e. for n = 2, but it is still unproved that the uniform upper bound of the numbers
of limit cycles occurring in quadratic systems is finite. This in spite of the fact that
no one was ever able to construct an example of a quadratic system for which more
than four limit cycles can be proven to exist.

Qn(z,y), (En)

n
Let x, be the space of planar vector fields X = (P, = Z aijziyj SOy =
i+5=0

n

Z bijz'y’) with the coefficients (aij,bij) € BC RN, for0 < i+j < n,N =
i+5=0

(n+1)(n + 2). The standard procedure in the study of polynomial vector fields is
to consider their behavior at infinity by extension to the Poincaré sphere. Thus,
we can see (E,) as an analytic N-parameter family of differential equations on S?
with the compact base B. Then, the second part of Hilbert’s 16th problem may be
splited into three parts:

Problem A Prove the finiteness of the number of limit cycles for any concrete

system X € x, (given a particular choice for coefficients of (E,) i.e,

${L.C. of (En)}< oo.

Problem B Prove for every n the existence of an uniformly bounded upper
bound for the number of limit cycles on the set B as the function of the parameters,
18

Vn,V(aij, bi;) € B,3H(n) such that #{L.C. of (En)} < H(n),
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and find an upper estimate for H(n).

Problem C For every n and known K = H(n), find all possible configurations
(or schemes) of limit cycles for every number K, K —i,7 = 1,2,--- , K—1 respectively.

Hence, the second part of Hilbert’s 16th problem consists of Problems A~Prob-
lem C.

The Problem A for polynomial and analytic differential equations are already
solved by J.Ecalle [1992] and Yu.Ilyashenko [1991] independently. Of course, as S.
Small stated that “These two papers have yet to be thoroughly digested by mathe-
matical community”.

Up to now, there is no approach to the solution of the Problem B, even for n = 2,
which seem to be very complicated. But there exists a similar problem, which seems
to be a little bit easier. It is the weakened Hilbert’s 16th problem proposed by
Arnold [1977):

“Let H be a real polynomial of degree n and let P be a real polynomial of
degree m in the variables (z,y). How many real zeroes can the function

I(h) :/ Pdzdy
H<h

have 7 ”

The question is why zeroes of the Abelian integrals I(h) is concerned with the
second part of Hilbert’s 16th problem ?

Let H(z,y) be a real polynomial of degree n, and let P(z,y) and Q(z,y) be real
polynomials of degree m. We consider a perturbed Hamiltonian system in the form

dz OH dy oH
% = oy TEP@UN, gr= o +eQ@n, ), (En)

in which we assume that 0 < € < 1 and the level curves
H(z,y)=h

of the Hamiltonian system (Eg)c—o contain at least a family I'y, of closed orbits for
h € (h1, ha).
Consider the Abelian integrals

I(h)=/r Pdy — Qdm—//}{(h (8P aQ)d dy.

Poincaré-Pontrjagin-Andronov Theorem on the global center bifurcation

The following statements hold.

(i) If I(h*) = 0 and I'(h*) # 0, then there exists a hyperbolic limit cycle L«
of system (6.1) such that Ly~ — I'p- as ¢ — 0; and conversely, if there exists a
hyperbolic limit cycle Ly~ of system (Ep) such that Lp. — I'p- as € — 0, then
I(h*) = 0, where h* € (hq, h).

(ii) If I(h*) = I'(h*) = I"(h*) = --- = I*~D(h*) = 0, and I®)(h*) # 0, then
(Eg) has at most k limit cycles for ¢ sufficiently small in the vicinity of T'j-.
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(iii) The total number of isolated zeroes of the Abelian integral (taking into
account their multiplicity) is an upper bound for the number of limit cycles of system
(Eg) that bifurcate from the periodic orbits of a period annulus of Hamiltonian
system (Eg)c=o-

This theorem tells us that the weakened Hilbert’s 16th problem posed by Arnold
[1977] is closely related to the problem of determining an upper bound N(n,m) =
N(n,m, H, P,@) for the number of limit cycles in a period annulus for the Hamilto-
nian system of degree n — 1 under the perturbations of degree m, i.e., of determining
the cyclicity on a period annulus. Since the problem is concerned with the number
of limit cycles that occur in systems which are close to integrable ones (only a class
of subsystems of all polynomial systems). So that it is called the weakened Hilbert’s
16th problem.

A closed orbit 'y« satisfying the above theorem (i) is called a generating cycle.

To obtain Poincaré-Pontrjagin-Andronov Theorem, the problem for investigating
the bifurcated limit cycles is based on the Poincaré return mapping. It is reduced
to counting the number of zeroes of the displacement function

d(h,t;") = 5M1(h) +E2M2(h) + - +5kMk(h) +,

where d(h,¢) is defined on a section to the flow, which is parameterized by the
Hamiltonian value h. I(h) just is equal to M;(h). The function My (h) is called
k-order Melnikov function. If I(h) = M;(h) = 0, we need to estimate the number
of zeroes of higher order Melnikov functions. The zeroes of the first nonvanishing
Melnikov function M (h) determine the limit cycles in (Ex) emerging from periodic
orbits of the Hamiltonian system (Ep)..

In Chapter 8, we discuss a class of particular polynomial vector fields: Z4-equivar-
iant perturbed planar Hamiltonian vector fields, by using Poincaré-Pontrjagin-An-
dronov Theorem and Melnikov’s result. The aim is to get some information for the
studies of the second part of Hilbert’s 16th problem.

IV. Isochronous center problem and periodic map

Suppose that system (E) has a center in the origin (0,0). Then, there is a family
of periodic orbits of (E) enclosing the origin. The largest neighborhood of the center
entirely covered by periodic orbits is called a period annulus of the center. If the
period of the orbits is constant for all periodic orbits lying in the period annulus of
the origin, then the center (0,0) is called an isochroous center. It has been proved
that the isochronous center can exist if the period annulus of the center is unbounded.

If the origin is not an isochronous center, for a point (£,0) in a small neighbor-
hood of the origin (0,0), we define P(£) to be the minimum period of the periodic
orbit passing through (£,0). The study for the period function & — P(£) is also very
interesting problem, since monotonicity of the period function is a non-degeneracy
condition for the bifurcation of subharmonic solutions of periodically forced inte-
grable systems.

The history of the work on period functions goes back at least to 1673 when
C. Huygens observed that the pendulum clock has a monotone period function and
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therefore oscillates with a shorter period when the energy is decreased, i.e., as the
clock spring unwinds. He hope to design a clock with isochronous oscillations in order
to have a more accurate clock to be used in the navigation of ships. His solution, the
cycloidal pendulum, is perhaps the first example of nonlinear isochronous center.

In the last three decades of the 20th century, a considerable number of papers
of the study for isochronous centers and period maps has been published. But, for
a given polynomial vector field of the degree is more than two, the characterization
of isochronous center is still a very difficult, challenging and unsolved problem.

In Chapter 4, we introduce some new method to treat these problems.

Except the mentioned seven chapters, we add three chapters to introduce our
more recent study results.

In Chapter 7, we consider a class of nonanalytic systems which is called “quasi-
analytic systems”. We completely solve its center and isochronous center problems
as well as the bifurcation of limit cycles.

In Chapter 8, as an example, for a class of Z;-symmetric cubic systems, we give
the complete answer for the center problem and the bifurcations of limit cycles. We
prove that this class of cubic systems has at least 13 limit cycles.

In the final chapter (Chapter 10), we study the center-focus problem and bifur-
cations of limit cycles for three-multiple nilpotent singular points. The materials are
taken by our recent new papers.

We would like to cite the following words written by Anna Schlomiuk in 2004 as
the finale of this preface: “Planar polynomial vector fields are dynamical systems but
to perceive them uniquely from this angle is limiting, missing part of their essence
and hampering development of their theory. Indeed, as dynamical systems they are
very special systems and the prevalent generic viewpoint pushes them on the side.
This may explain in part why Hilbert’s 16th problem as well as other problems are
still unsolved even in their simple case, the quadratic one. But, Poincaré’s work
shows that he regarded these systems as interesting object of study from several
viewpoints, and his appreciation of the work of Darboux which he qualifies as ‘ad-
mirable’ emphasizes this point. This area is rich with problems, very hard, it is true,
but exactly for this reason an open mind and a free flow of ideas is necessary. It is to
be hoped that in the future there will be a better understanding of this area which
lies at a crossroads of dynamical systems, algebra, geometry and where algebraic
and geometric problems go hand in hand with those of dynamical systems.”

The book is intended for graduate students, post-doctors and researchers in dy-
namical systems. For all engineers who are interested the theory of dynamical sys-
tems, it is also a reasonable reference. It requires a minimum background of an
one-year course on nonlinear differential equations.

The publication of this book is supported by the research foundation of the Center
for Dynamical Systems and Nonlinear Scienu Science Studies given by Zhejiang Nor-
mal University. The work described in this book is supported by the grants from the
National Natural Science Foundation of China (11371373,11071222 and 11261013).
The third author would like to thank the support by Guangxi Key Laboratory of
Trusted Software in Guilin University of Electronic Technology and Guangxi Educa-
tion Department Key Laboratory of Symbolic Computation and Engineering Data
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Processing in Hezhou University.

Finally, we would like to acknowledge all members of the Center for Dynamical
Systems and Nonlinear Studies of Zhejiang Normal University for their encourage-
ment and help. We thank Mr.Yanchao Zhao of the Science Press of Chinese Academy
of Sciences for their help in the publication of this book. We also thank the staff at
De Gruyter for their interesting to publish this book and for their useful suggestions
to improve the content of this book.

Jibin Li
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