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Explaining Systems
Analysis

A INTRODUCTION: BUILDING MODELS

This chapter is about building mathematical models that assist in the design or
management of natural or constructed systems. These models may also assist
in the development of policy relative to these systems. Mathematical models
may not be a familiar term, but virtually all people have experience with other types
of models.

As children, many will have built and flown paper airplanes. Some will have
built model airplanes of balsa or plastic. Many will have built model villages in
school exercises. In the adult world, architects build scale models to see how pro-
posed buildings fit within their intended environments. Engineers build model cars
and test them in wind tunnels for drag resistance in order to develop fuel-efficient
cars. Such physical models that mimic their larger and real cousins are termed iconic
models.

In addition to physical models, most of us, especially when we were younger,
participated in models of human systems. These models or simulations gave us the
opportunity to experiment with other roles. You may well have played cops and rob-
bers, cowboys and Indians, space invaders, house, doctor/hospital, circus, or any of a
number of other games that allowed the simulation of other environments. Al-
though Monopoly™ is entertainment, it tested financial acumen in an environment
with much randomness. Checkers and chess helped to develop our spatial intuition

From Chapter 1 of Civil and Environmental Systems Engineering, Second Edition. Charles S. Revelle,
Earl E. Whitlatch, Jeff R. Wright. Copyright © 2004 by Pearson Education, Inc. All rights reserved.
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and our ability to foresee the consequences of our actions. Military forces regularly
conduct “war games” to test the readiness of their troops in realistic situations. Fire
drills are used to simulate the conditions and situations that may occur during fire
episodes. Pilots may test their flying skills in a “flight simulator.” Iconic and role-
playing (participatory) models pervade society and enrich it with the insights they
provide.

Scientists have been using models as well; they have been building mathemat-
ical models at least since the time of Newton in the late seventeenth century. By the
late 1800s and early 1900s, physicists, engineers, chemists, biologists, mathemati-
cians, and statisticians were all actively building such quantitative models—to assist
them in their understanding of atomic, mechanical, chemical, and biological systems.
In the last half of the twentieth century, economists joined in the model building
movement—in an attempt to predict future economic conditions.

For the most part, these models from the various disciplines were built using
differential and difference equations. Such models are still regularly being built
throughout the sciences, social sciences, and engineering as a means to explain, to
comprehend, and to predict natural phenomena. These mathematical representa-
tions are collectively called descriptive models because they offer, for a given set of
inputs and initial conditions, a description of the outputs through time of the phe-
nomena under study. For instance, a common model in biology predicts the popula-
tion of a species, given initial population and growth parameters.

Since World War II, however, two important developments have transformed
the world of mathematical modeling. The first development was the creation of a
new mathematics, a mathematics that focused on the science of decision making and
policy development. The second development was the invention and continual im-
provement of the digital computer—a development made possible by the silicon
chip. The invention and subsequent development of the computer have dramatically
extended the power of descriptive models. Such models are now far more capable of
mimicking natural phenomena successfully—even on a global scale.

The invention of a mathematics of decision making, on the other hand, has
opened avenues of research not previously thought possible. Although this new
mathematics was originally applied only to small problems, much as descriptive
models initially were applied, the rapid evolution of the computer has now made
possible the study and consideration of enormously large problems. These problems
have gone far beyond the limits imagined by those who originated the mathematics
of decision making. Thus, the computer greatly facilitated the application and devel-
opment of both descriptive and decision-making mathematics.

We called the first type of mathematical representation a descriptive model
because it describes. In contrast, the representation that uses the mathematics of
decision making is called a prescriptive model because it prescribes a course of ac-
tion, a design, or a policy. The descriptive model is said to answer the question, “If I
follow this course of action, what will happen?” In contrast, the prescriptive model
may be said to answer the question, “What is the best course of action that I might
follow?” For a particular strategy that was specified in advance, the descriptive
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model predicts the quantitative outcomes, possibly through time. The prescriptive
model, on the other hand, finds and suggests the best strategy to choose out of the
universe of all possible strategies. Implied in the question of what strategy to select
is likely to be some notion of cost or of effectiveness. That is, the course of action
derived by the decision model is chosen to be the least costly or the most effective
or the most cost-effective.

Another term used for a prescriptive model is to call it an optimizing or
optimization model, in the sense that the policy or design that is selected achieves
the best value of some objective. This chapter will focus on prescriptive models, but
it is often true that descriptive models may be contained within prescriptive models.
These descriptive models are sometimes so simple that a reader may not even real-
ize that a descriptive model is being used. Often, the descriptive model may consist
of the simple assumption that the amount of a particular resource consumed is
directly proportional to the number of items manufactured of a given type.

The descriptive/prescriptive classifications are just one of several ways we can
divide types of mathematical models. Another realistic way we can divide model
types is by the kind of data that they utilize. Some models utilize data that are con-
sidered to be known with relative certainty. An example might be the number of
table tops of a given size that can be cut from a 4 ft. X 8 ft. sheet of plywood. Except
for very occasional cutting errors or flaws in the plywood, that number is fixed and
known. Another example is the operation through time of a materials stockpile, say
heating oil or even beer or grain. In such a situation, the size of a given month’s de-
mand for the product is fairly predictable year to year. Models of this type, in which
data elements are not thought of as variable but are relatively fixed and predictable
quantities, are referred to as deterministic models.

In deterministic models, parameter values are determined and known at the
outset. Given the initial contents of the stockpile and a specified release of materials
and a stated purchase or manufacture of new materials during a unit of time, a de-
terministic model suggests that there is just one possibility for the final, end-of-period
condition of the stockpile. That is, only a single outcome can occur from a month’s
events given the choice of action (see Figure 1a). The stockpile’s contents is precise-
ly the sum of the initial storage plus new purchases less the stated release.

In contrast to deterministic models, other models might utilize data elements
that are not precisely known but can be characterized by a mean and some random
variation about the mean. The September inflow to a reservoir might fit in this cate-
gory. September is part of hurricane season in the eastern United States. During
some Septembers, hurricanes may cross the Northeastern states and will produce
very large rainfalls and runoff. In other Septembers, when no hurricane tracks
across the Northeast, little rain may occur and inflows to reservoirs may be quite
low. No one really knows in advance whether hurricanes will cross a particular geo-
graphic area in September, so reservoir inflows cannot really be precisely predicted.

Models in which the data elements are random or variable—capable of taking
on any value from a range of values—are called stochastic models. Given an initial
value of the storage in the reservoir, and a known amount of release for water supply,
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Time ¢ Timer + 1
(a) A deterministic process

Initial Final

state state

Time ¢ Timer + 1

(b) A stochastic process

Initial Possible
Figure 1 Deterministic state final
and Stochastic Processes state

the stochastic model suggests that the end-of-month contents of the reservoir can be
stated, but with some uncertainty. This is because of the random inflow to the
reservoir—an inflow that cannot be predicted but will fall within some range of pos-
sible inflows. Many end-of-period values of storage are possible and final storages
will be in some range of outcomes. (See Figure 1b.) These two additional model clas-
sifications, deterministic and stochastic, allow us to classify models into four basic
types; these are summarized in Table 1, discussed more fully shortly.

Positioned in concept somewhere between the deterministic and stochastic
model is a statistical model. In a statistical model, system inputs have been observed
or recorded, and system outputs have been measured. The relationship, however,

TABLE1 TYPES OF MODELS BASED ON TWO-WAY CLASSIFICATION

Deterministic Stochastic
© Linear programming Stochastic programming
:::_i. Integer programming
-
§ Multiobjective programming
A Dynamic programming
Difference equations Stochastic differential equations
Differential equations Queueing theory

Monte Carlo simulation

Descriptive
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between systems inputs and outputs does not seem to be consistent. As an example,
nitrogen-containing fertilizer may be applied to a field at the beginning of the grow-
ing season for a corn crop. The additional yield of corn from an increment of fertil-
izer may prove to be different in different years, perhaps because of rainfall, and
perhaps because of different soil characteristics of fields. Data may be gathered
from many experiments, and the yield of corn per hectare may be plotted against
kilograms of nitrogen applied per hectare. The data do not appear to fall on a
straight line or even a smooth curve, but are scattered above and below the line that
one might draw to approximately fit the curve.

A statistical model is a hypothesis of the relationship between output (corn
yield) and input (fertilizer applied). The model may suggest that the relationship is
linear or nonlinear. A statistical model may be thought of as neither deterministic
nor stochastic, but a model that provides the most likely or expected outcome of
conditions (yield) given the input (fertilizer) and uncertain events (rainfall).

The intersections of these two sets of categories—deterministic/stochastic and
prescriptive/descriptive—give rise to a four-component classification table that con-
tains (except for statistical models) nearly all major model types that are utilized to-
day. Referring to Table 1, models that are deterministic and descriptive are typically
differential equation models or models that use difference equations. These are
models that a scientist or engineer probably encountered in a calculus or applied
mathematics course. The models typically incorporate empirically derived parame-
ters, rate constants, and known (or at least assumed) initial conditions. These models
may be linear or nonlinear, depending on the nature of the system or on the degree
of realism needed for the model structure in the particular application.

The intersection of descriptive and stochastic models contains several types of
models. One is the differential equation/difference equation model coupled with pa-
rameters that are random variables. Such equations are called stochastic differential
equations—a form of mathematics that becomes exceedingly complex when the
equation(s) contain more than one random parameter. As soon as two random pa-
rameters are introduced, the structure of the correlation between the parameters
also needs to be known in order to create the range of model outcomes. As an ex-
ample, July streamflows may be a function of both July rainfall and temperature—
but the rainfall and temperature are themselves interrelated, lower rainfalls being
associated with higher temperatures.

A second model form at the intersection of descriptive and stochastic models
is embodied in the mathematics of queueing theory or, more generally, the field
known as stochastic processes. The mathematics of stochastic processes presume
known parameters that describe arrivals and departures in a random environment.
A third model type at this intersection is known as simulation, a computer-intensive
form of modeling that generates realistic events and system responses through time.
Here, the statistics of the events and the responses are designed to correspond to the
actual statistics of parameters in the system being studied. As an example, the back-
up of cars at a toll plaza is modeled using the rate of arrival of vehicles at a toll
booth and rate of collecting tolls. The toll collection process might be modeled to
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observe the impact or influence of different numbers of toll collectors and of auto-
mated toll booths on the number of cars that get backed up at the plaza. All three
model types that describe systems responding to random variation—differential
equation models, stochastic process models, and simulation models—allow the mod-
eler to observe the range of possible outputs that might evolve through time from
different sets of initial conditions and control actions.

Another intersection in the two-way table is that of prescriptive models with
deterministic models. These are the deterministic optimization models and are
known by various names. The names of the models depend on whether the mathe-
matical descriptions are linear or nonlinear; they may depend on whether the mod-
els are static or evolve through time; and they depend on whether the variables are
restricted to integers or are continuous. One of the model names is linear program-
ming (LP), the form of optimization that is arguably the most popular form of opti-
mization. Linear programming models have a linear or linearizable objective and
linear constraints. Exact algorithms, solution procedures that are iterative in nature
and which find global optimal solutions, exist for linear programming problems.
Furthermore, computer software that implements the algorithms is widely available
to solve even very large linear programming problems.

Other model names and forms of optimization include quadratic programming,
gradient methods, optimal control theory, dynamic programming, multi-objective pro-
gramming, and integer programming. These names reflect either the mathematical
forms being used or are descriptive of the algorithm or the setting.

Quadratic programming deals with problems having a quadratic objective
function. Gradient methods direct computations to follow slopes of objective func-
tions to locally optimal or optimal solutions. Optimal control theory finds an opti-
mal control or decision function in time or an optimal trajectory to achieve some
goal. Dynamic programming typically considers problems with a number of time
stages. Multiobjective programming operates on problems with more than one ob-
jective and derives tradeoffs between those objectives. Integer programming con-
siders only integer-valued decisions as practical or desirable.

The reader will be interested in the meaning of the word programming in this
context. The body or collection of all optimization methods is known as
mathematical programming, and its subspecialties are known as linear program-
ming, dynamic programming, integer programming, and so on. It is common for the
student without familiarity with these methods to presume that the term
programming, which is used to describe optimization models and methods, is associat-
ed with and means computer programming, It does not, however, refer to the use of
the computer. The “programming” in mathematical programming is a term that
means scheduling, the setting of an agenda, or the creation of a plan of activities.
Some confusion seems inevitable, however, because virtually all optimization, ex-
cept that done as learning exercises for homework, classes, or labs, requires exten-
sive use of digital computation.
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The remaining intersection of model categories in the four-component table is
that of prescriptive and stochastic models. There is a form of optimization that deals
with models whose parameters are random variables; that is, the parameters can
take on any of a number of values or any value in a range of values simply by
chance. The form of optimization is known as stochastic programming, and it re-
quires of the student a relatively strong background in probability theory. The im-
portance of stochastic programming to applied studies is growing, but it is also
probably one of the most challenging forms of mathematical programming and is
the province of specialists.

Of the various forms of programming or optimization, the most widely used
in practice is linear programming. The wide application of linear programming is
not simply a matter of the existence of an efficient and exact method of solution—
although an efficient and exact solution method is available. No matter how effi-
cient a solution procedure may be, a methodology for a form of optimization that
does not match the needs of real problem settings would not be expected to be uti-
lized widely. It follows that the wide use of linear programming is not driven by the
availability of a solution method so much as it is driven by the form of the linear
program. A linear programming problem statement has a widely applicable and uni-
versally appealing structure. Its form places an objective or goal alongside
constraints. The objective is the element to be optimized—perhaps it is cost that is to
be minimized or profit that is to be maximized. Constraints are conditions that any
and every solution must satisfy—for instance, resources cannot be exceeded.

Many objectives are possible for a linear programming problem. These include,
but are not limited to, minimum cost, maximum production, maximum equity, maxi-
mum access, minimum waiting time, minimum waste, and maximum profit. Con-
straints, on the other hand, are natural limits on achievement or imposed limits on
resources use. The most commonly constrained quantities are resources such as per-
sonnel, vehicles, level of investment, time, and materials. Other constraints that might
be used in integer programming problems enforce the logic of system development.
For instance, a particular nearby link of a road network must be built before some other
more remote link can be built. Finally, some constraints provide only definitions.

Remarkably, the language of objectives and constraints of the linear program-
ming problem turns out to be the language of real problem statements. Practical
problems are often stated in precisely this format of objective and constraints. These
problem statements are frequently offered by people who have absolutely no train-
ing in modeling or in systems engineering or in optimization. It is an absolutely
striking and unforgettable phenomenon to find people without any systems training
describing their problems in the language of the linear programming problem. It is
the naturalness of the linear programming problem statement that accounts for the
widespread appeal of this form of optimization. Some other forms of optimization
also have this structure, but no methodology that uses this structure is more versa-
tile and more available than is linear programming,
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B HISTORY OF SYSTEMS AND OPTIMIZATION

Two great events punctuate the history of applied mathematics. The first step, the in-
vention of calculus, occurred in the seventeenth century. Sir Isaac Newton was one
of two inventors of the calculus. Although Newton in Britain was the first to create
the calculus in 1665-1666, Baron von Gottfried Wilhelm Liebniz independently in-
vented the calculus in 1675. In that era, publication of ideas was often long delayed.
Liebniz published his calculus in 1684, nine years after he conceived the idea. New-
ton, in order to retain claim to his invention, rushed into print by 1687. The world of
mathematics was never the same.

Interestingly, the stimulus for Newton’s invention of the calculus was not a
consideration of abstract mathematical issues. Instead, Newton was interested in ex-
plaining the effects of the planets on one another, and in the process of this quest, he
needed to create the calculus. That is, the calculus was invented to solve a general
problem that Newton was considering. In the same way, the invention of linear pro-
gramming was propelled by the necessity of solving real problems.

Almost three centuries later, another event shook and reoriented not only the
world of mathematics, but also the fields of economics and engineering. The inven-
tion of linear programming was to influence not only economics but would form the
core of an entirely new discipline, operations research or systems engineering. In the
same way that the calculus can be traced to two central figures, the development of
linear programming is attributed to several towering people.

At about the same time, Koopmans in the United Kingdom and Kantorovich
in the former U.S.S.R. independently attacked the problem of least-cost distribu-
tion of items. Kantorovich’s work (1939) was suppressed for more than twenty
years by Soviet authorities. Koopmans came to the United States where he en-
countered a young George Dantzig who had just created an algorithm, a set of
semi-automated mathematical steps, to solve linear programming problems.
Dantzig’s algorithm provided a practical method of solution to the problem Koop-
mans had been studying. Dantzig invented the simplex procedure for solving linear
programming problems in 1947 as part of a U.S. Air Force research project. His
procedure, with modifications and enhancements to take advantage of modern
computers, is in wide use today.

In the period 1948-1952, Charnes and his coworkers pioneered industrial ap-
plications of linear programming and created the simplex tableau—the special tabu-
lar data storage methodology used in the repeated calculations of the simplex
procedure. Charnes and coworkers went on to adapt linear programming to deal
with convex rather than linear functions, to invent goal programming, and to create
new forms of optimization to deal with problems that operated with random para-
meters. Charnes did not stop at industrial applications of linear programming. With
students and coworkers he pushed on to the first applications of linear programming
to civil and environmental engineering. Dantzig went on to make major contribu-
tions to the solution of network and logistic problems. Koopmans and Kantorovich
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received the 1975 Nobel Prize in Economics for their work in linear programming.
The magnificent achievements of Dantzig and Charnes have not been honored in
such a way.

There is more to the history of systems, though, than the development of the
mathematics and its application in new settings. Dantzig tells us that the calculations
and data manipulations that were needed for the first application of the simplex
procedure were so extensive and voluminous that the application was carried out on
a large tablecloth. (Of course, the computers of the time were too primitive for such
calculations.) This calculation procedure was carried out for a linear problem of a
size that the reader can do by hand. In fact, the problem was minute by today’s stan-
dard. Problems solved today may have dimensions that are more than four orders of
magnitude (10,000 times) larger than those first linear programming problems. The
difference, of course, that makes the solution of such large problems possible is the
appearance and explosive evolution of the computer. From the 1950s onward, com-
puters have advanced in speed and power, making possible the solution of larger
and larger linear programming problems.

Whereas a careful person may solve—by hand calculations alone—a problem
with perhaps ten variables and five constraints, modern codes on up-to-date
personal computers can easily handle problems with more than 20,000 variables and
5.000 constraints. With continual advances in computer technology, even these num-
bers will soon be far surpassed. We can say with complete assurance that linear pro-
gramming would today only be a fascinating but small branch of applied
mathematics and economics if it were not for the co-development in time of the
electronic computer. With the development and evolution of the computer, linear
programming has become the foremost mathematical tool of operations research, of
management science, industrial engineering, and engineering management.

Up to now, we have been using the terms systems and systems analysis without
any sort of definition, although we have attempted to operate with an intuitive feel
for the terms. Before going on to examples of systems analysis applications, it is ap-
propriate to offer some definition of the term systems analysis, so that the examples
can be viewed in the context of our definition. Of course, the easiest definition can
be offered by re-interpreting the words systems analysis so that we get the phrase
“an analysis of systems.” By this we mean that we are investigating the behavior of a
system, typically by choosing various options for the control or management of the
system.

For example, we might be investigating a river system, and we would try vari-
ous levels of pollution control at cities along the river to see what levels of water
quality result. From this study, we can enumerate the various measures of control
that achieve some particular desired level of water quality. Further, from this list of
many choices for control, all of which achieve the desired level of water quality, we
can select that single set of choices for pollution control that yields the desired wa-
ter quality at the least system-wide cost. So systems analysis implies the organized
study of alternatives and options for the management or design of a system.



10

Explaining Systems Analysis

The alternatives in a systems analysis can be generated by almost any of the
model types we have discussed above—from simulation with many different sets of
control options in place, from solution of differential equations with an exploration
of many possible management strategies, etc. With this definition in mind, we now
need to explain how optimization methods such as linear programming fit within
the idea of systems analysis, although the answer may be nearly evident by now. Op-
timization via linear programming arrives at the “best” mathematical alternative by
iteration. The iterations automatically consider only the control options that achieve
the required outcome, in terms of, let us say, constraints on water quality. However,
the iterations are internal to the process, invisible in a sense because the options ex-
amined along the way, in the iteration process, are usually never seen by the analyst.
The optimization process provides only the final and best strategy to the analyst for
further study and consideration. Hence, we may think of optimization as an
automated form of systems analysis in which many many examined strategies are im-
plicitly (internally) generated and investigated. Typically, only one of those many ex-
amined strategies will be presented by the optimization code to the analyst for
further study. Optimization may be thought of as systems analysis automated; it
may be considered a “power” systems analysis, in contrast to the older style of ex-
plicit exploration of numerous feasible alternatives. The preceding description,
while accurate, may not yet be fully clear; clarity should come when the simplex so-
lution procedure of linear programming is ultimately understood.

We next provide a description of typical and important members of the broad

array of applications of our automated form of systems analysis—of optimization
applications.

C APPLICATIONS OF LINEAR PROGRAMMING

To provide you with an idea of how widely utilized linear programming and its de-
rivative types of optimization are, we describe a number of settings in the public sec-

tor, in industry, and in business where linear programming and allied methods have
been put to use.

C.1 Distribution, Warehousing, and Industrial Siting

From the beginning, distribution has played a key role in the development of linear
programming. It was the problem of least-cost distribution of goods from multiple
sources to multiple destinations that motivated both Koopmans and Kantorovich
to structure their linear programs; these problems are known today as transporta-
tion problems, and very large problems are solved routinely, even on desktop com-
puters. Transportation problems assume that direct and separate shipments are
made over known routes. Another class of problems, known as delivery or routing
problems, also move goods from multiple origins to multiple destinations. However,
the challenge of delivery and routing problems is to find the tours or routes for
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vehicles that will drop off the needed amounts at multiple destinations as the vehi-
cles traverse the prescribed route. These problems can be structured as linear inte-
ger programs.

Warehouse problems, another class of problem that has been solved by linear
programming, examine the optimal stocking of goods and suggest the release quan-
tities of those goods through time to the distribution system. The siting of ware-
houses between factories and markets has also been studied with linear integer
programming, as has the siting of manufacturing plants, which may supply either
warehouses or customers.

C.2 Solid Waste Management

Within the environmental area, linear programming and allied methods have been
used to site landfills and the stations at which small trucks transfer their loads to
larger trucks. As well, these methods have been utilized to outline solid waste col-
lection districts. These techniques have also been directed at the routing of solid
waste collection vehicles through street networks and, within the framework of haz-
ardous waste management, the routing of spent nuclear fuel from power plants to
storage sites.

C.3 Manufacturing, Refining, and Processing

Some of the earliest applications of linear programming took place in these areas.
The problem Koopmans called activity analysis consists of choosing which items of
many to manufacture in order to achieve either least cost or maximum profit. In
these problems, constraints limit the total amount of each of various resources that
would be consumed in the manufacturing process. Another manufacturing area to
which linear programming and allied methods have been applied is the design of
factory floors. Known as the facility layout problem, this model sites the various ac-
tivities on the factory floor to minimize interaction costs.

The operation of a refinery, especially the blending of aviation fuel, was stud-
ied early in the history of linear programming—in this case by Charnes and cowork-

ers. Chemical process design remains a fertile area to this day for the application of
linear programming.

C.4 Educational Systems

Educational systems are a rich setting for the application of systems methodology.
Linear programming and allied procedures have been applied to class scheduling
and room scheduling. These methods have also been used in school bus routing and
to draw school district boundaries for efficient transportation and efficient utiliza-
tion of school capacity. LP has also been utilized to allocate pupils to schools to

achieve mandated desegregation plans. LP models have also been used for enroll-
ment planning at colleges.

11
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C.5 Personnel Scheduling and Assignment

Systems techniques have found application in the scheduling of personnel through
shift rotations. They have also been used to assign people to jobs or tasks in large or-
ganizations. The scheduling and assignment of airline crews to flight legs is an ongo-
ing and important use of linear integer programming. Manpower planning models
have also been developed using linear programming to project needs and policies
relative to such areas as physician and nurse availability. The efficient assignment of
crews to snow plows for winter highway maintenance has also been structured as a
linear programming problem.

C.6 Emergency Systems

Since the late 1960, linear programming and allied methods have been applied to
the siting of fire engines, fire trucks, fire stations, and ambulances. Early problem
statements focused on minimizing average travel time, given budget constraints.
Later formulations required or sought “coverage,” the stationing of at least one ve-
hicle within a travel time or distance standard of every point of demand. Cost was
either a constraint or an objective in these models. Most recently, congestion in
emergency systems has been investigated with the emphasis on ensuring the actual
availability of a server within the time standard at the moment of a call. Dozens of
linear programming models have been built in the area of emergency facility siting.
Other areas of siting have also been investigated, and these are referred to in
Section C.1, “Distribution, Warehousing, and Industrial Siting.”

C.7 The Transportation Sector

Linear programming or variants have been used extensively in the design of trans-
portation networks including highway networks, rail networks, and airline networks.
Efficiency and cost objectives have been utilized in such formulations with con-
straints on connectivity (or continuity) of the network or on population proximity to
the network. LP and integer programming have also been used to design bus routes,
assign drivers to buses, schedule buses, and choose bus stop locations. Traffic light
timing at intersections and at freeway entrance ramps have also been approached as
linear programming problems.

Goods movement, as mentioned in Section C.1, “Distribution, Warehousing,
and Industrial Siting,” is a classic application of linear programming. Empty railcar
movement has also been structured as a linear programming problem, as has the se-
lection of freight terminals to open or close and the specification of hubs in an air-
line network. The development of pipeline networks for oil and natural gas can also
be structured as a linear programming problem. Military applications of linear pro-
gramming are often of a goods movement/logistics nature. The vertical alignment or
grade design of highways, as well as the determination of optimal cut-and-fill strate-
gies, can be cast as linear programming problems.



