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f The goal of this book is to present the

Pl'e aCe basic facts of functional analysis in a form
suitable for engineers, scientists, and applied
mathematicians. Although the Definition—
Theorem—Proof format of mathematics is
used, careful attention is given to motivation
of the material covered and many illustrative
examples are presented.

The text can be used by students with
various levels of preparation. However, the
typical student is probably a first-year grad-
vate student in engineering, one of the for-
mal sciences, or mathematics. It is also pos-
sible to use this book as a text for a
senior-level course. In order to facilitate
students with varying backgrounds, a num-
ber of appendices covering useful mathe-
matical topics have been included. Moreover,
there has also been an attempt to make the
pace in the beginning more gradual than
that of later chapters.

The first five chapters are concerned with
the “geometry” of normed linear spaces. The
basic approach is to “disassemble” this geo-
metric structure first, study the pieces, then
reassemble and study the whole geometry.
The pieces that result from this disassembly
are set-theoretic, topological, and algebraic
structures. Hence, Chapter 2 covers the ap-
propriate set theory; Chapter 3 treats topo-
logical structure, in particular, metric spaces;
and Chapter 4 handles algebraic structure,
in particular, linear spaces. The reassembly
takes place in Chapter 5 where normed
linear spaces are studied. The main topic of
this chapter is the geometry of Hilbert
spaces.

The authors have found that the ma-
terial covered in these first five chapters can
be presented in a one-semester beginning
graduate course. Indeed, the authors have
done so a number of times in engineering

vii



viii PREFACE

and mathematics departments at a number of universities in the United States,
Europe, and South America. Needless to say, the mode of presentation depends
upon the audience. For certain audiences, motivation and examples are empha-
sized while proofs are only highlighted. For others, the converse is the case. An
attempt has been made to make the book suitable for both modes of presenta-
tion. Moreover, there is material in the large collection of exercises appropriate
for each type of audience.

Chapters 6 and 7 take the geometric structure developed in the first five
chapters and apply it to the geometric analysis of linear operators. Chapter 6
covers the Spectral Theorem (the eigenvalue-eigenvector representation) for
compact operators. Chapter 7 extends this material to certain discontinuous
operators, in particular it treats those operators with compact resolvents. These
two chapters also contain many illustrative examples.

Many chapters are divided into parts (Part A, Part B, and so forth). Part A
contains basic introductory concepts. The subsequent parts of each chapter
develop additional concepts and special topics. Thus, if a relatively quick intro-
duction is desired, Part A can be covered first and material from the rest of the
chapter can be added as needed.

For the person who is interested in getting to the spectral theory of linear
operators as soon as possible it is recommended that he cover Part A of Chapters
3 and 4, Sections 1-8, 12-24 of Chapter 5, and then Chapters 6 and 7.

There is an important problem concerning integration theory. Although
integration theory is not needed to understand the basic material covered, there
are certain examples that do make reference to the Lebesgue integral and prob-
ability spaces. This problem can be handled in at least two ways. First, it can
be more or less ignored. That is, the student can be told that there is such a
thing as a Lebesgue integral and what its relation to the, presumably familiar,
Riemann integral is. Probability spaces can be “glossed” over in the same way.
The other way to approach the problem is to use the appendices. Appendix D
gives an introduction to Lebesgue integration theory, and Appendix E presents
the basic facts about probability spaces.

Each chapter is denoted by a numeral; that is, Chapter 3. The tenth section
of the third chapter is denoted Section 3.10. However within Chapter 3, the 3
may be dropped and Section 10 used instead of Section 3.10. Theorem 5.5.4
(or Definition 5.5.4, Lemma 5.5.4, Corollary 5.5.4) refers to the fourth theorem
in Section 5 of Chapter 5.

The notation “JJ” is used to denote the end of proofs and examples. This
allows the proof or examples to be skimmed on first reading.

The authors would like to thank a number of people who have aided in the
development of this book. First, there are the students at various universities
who have taken courses from one or the other of us based upon manuscript
versions. Their suggestions have been invaluable. Next, we would like to thank
colleagues who have aided us in various ways: H. Antosiewicz, M. Damborg,
K. Irani, G. Kallianpur, W. Kaplan, W. Littman, W. Miller, R. Perret, W. Porter,
T. Pitcher, P. Rejto, Y. Sibuya, H. van Nauta Lemke, and H. Weinberger. We
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especially want to thank F. Beutler for the many suggestions that arose out of
his classroom use of the manuscript. Finally, we would like to thank the many
secretaries at various universities who have helped in the preparation of the manu-
script. In particular, we would like to thank the secretarial staffs of the Depart-
ment of Electrical Engineering at the University of Michigan arnd the School
of Mathematics at the University of Minnesota.

Ann Arbor Arch W. Naylor
Minneapolis George R. Sell
1971

Preface to the Second Edition

We are very pleased that the new edition is being published and we are
grateful to Springer-Verlag for doing this. The number of inquiries that we
received each year made us believe that a new edition would be welcomed. We
hope we were right, and we hope that it will be of use to our colleagues and their
students.

We further hope, probably unrealistically, that we have corrected all errors of
the first edition.

Ann Arbor Arch W. Naylor
Minneapolis George R. Sell
1982
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