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Preface

Publish and perish—Giordano Bruno

Given the number of books that already exist on the subject of quantum
mechanics, one would think that the public needs one more as much- as’
it does, say, the latest version of the Table of Integers. But this does aot
deter me (as it didn’t my predecessors) from trying to circulate my own
version of How it ought to be taught. The approach to be presented here
(to be described in a moment) was first tried on a group of Harvard under-
graduates in the summer of *76, once again in the summer of *77, and more
recently at Yale on undergraduates ('77-"78) and graduates (’78-'79)
taking a year-long course on the subject. In all cases the results were very
satisfactory in the sense that the students seemed to have learned the subject
well and to have enjoyed the presentation. It is, in fact, their enthusiastic
response and encouragement that convinced me of the soundness of my
approach and impelled me to write this book.

~ The basic idea is to develop the subject from its postulates, after ad-
dressing some indispensable preliminaries. Now, most people would agree
that the best way to teach any subject that has reached the point of develop-
ment where it can be reduced to a few postulates is to start with the latter,
for it is this approach that gives students the fullest understanding of the
foundations of the theory and how it is to be used. But they would also
argue that whereas this is all right in the case of special relativity or me-
chanics, a typical student about to learn quantum mechanics seldom has
any familiarity with the mathematical language in which the postulates
are stated. I agree with these people that this problem is real, but I differ
in' my belief that it should and can be overcome. This book is an attempt
at doing just this.

It begins with a rather lengthy chapter in which the relevant math-
ematics of vector spaces is developed from simple ideas on vectors and
matrices the student is assumed to know. The level of rigor is what I think
is needed to make a practicing quantum mechanic out of the student. This
chapter, which typically takes six to eight lecture hours, is filled with
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viii Preface

examples from physics to keep students from getting too fidgety while
they wait for the “‘real physics.” Since the math intrpduced has to be taught
sooner or later, I prefer sooner to later, for this way the students, when
they get to it, can give quantum theory their fullest attention without
having to battle with the mathematical theorems at the same time. Also,
by segregating the mathematical theorems from the physical -postulates,
any possible confusion as to which is which is nipped in the bud.

This chapter is followed by one on classical mechanics, where the
Lagrangian and Hamiltonian formalisms are developed in some depth.
It is for the instructor to decide how much of this to cover; the more
students know of these matters, the better they will understand the con-
nection between classical and quantum mechanics. Chapter 3 is devoted
to a brief study of idealized experiments that betray the inadequacy of
classical mechanics and give a glimpse of quantum mechanics. "

Having trained and motivated the students I now give them the postu-
lates of quantum mechanics of a single particle in one dimension. I use the
word “postulate” here to mean “that which cannot be deduced from pure
mathematical or logical reasoning, and given which one can formulate
and solve quantum mechanical problems and interpret the results.” This
is not the sense in which the true axiomatist would use the word. For in-
stance, where the true axiomatist would just postulate that the dynamical
variables are given by Hilbert space operators, I would add the operator
identifications, i.e., specify the operators that represent coordinate and
momentum (from which others can be built). Likewise, I would not stop
with the statement that there is a Hamiltonian operator that governs the
time evolution through the equation i#d) y>/0t = H|y); I would say the
H is obtained from the classical Hamiltonian by substituting for x and p
the corresponding operators. While the more géneral axioms have the
virtue of surviving as we progress to systems of more degrees of freedom,
with or without classical counterparts, students given just thése will not -
know how to calculate anything such as the spectrum of the oscillator.
Now one can, of course, try to “derive” these operator assignments, but
to do so one would have to appeal to ideas of a postulatory nature them-
selves. (The same goes for “deriving” the Schrodinger equation.) As we
g0 along, these postulates are generalized to more degrees of freedom and
it is for. pedagogical reasons that these generalizations are postponed.
Perhaps when students are finished with this book, they can free themselves
from the specific operator zssignments and think of quantum mechanics
as a general mathematical formalism obeying certain postulates (in the
strict sense of the term). '
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The postulates in Chapter 4 are followed by a lengthy discussion of
the same, with many examples from fictitious Hilbert spaces of three
dimensions. Nonetheless, students will find it hard. It is only as they go
along and see thes¢ postulates used over and over again in the rest of the
book, in the setting up of problems and the interpretation of the results,
that they will catch on to how the game is played. It is hoped they will be ~
able to do it on their own when they graduate. I think that any attempt
to soften this initial blow will be counterproductive in the long run.

Chapter 5 deals with standatd:problems in one dimension. It is worth
mentioning that the scattering off'a step potential is treated using a wave
packet approach. If the subject seems too hard at this stage, the instructor
may decide to return to it after Chapter 7 (oscillator), when students have
gained more experience. But I think that sooner or later students must get
acquainted with this treatment of scattering.

The classical limit is the subject of the next chapter. The harmonic
oscillator is discussed in detail in the next. It is the first realistic problem and
the instructor may be eager to get to it as soon as possible. I{ the instructor
wants, he or she can discuss the classical limit after discussing the oscillator.

We next discuss the path integral formulation due to Feynman. Given
the intuitive understanding it provides, and its elegance (not to mention
its ability to give the full propagator in just a few minutes in a class of
problems), its omission from so many books is hard to understand. While
it is admittedly hard to actually evaluate a path integral (one example is
'provided here), the notion of expressing the propagator as a sum over
amplitudes from various_paths is rather simple. The importance of this
point of view is becoming clearer day by day to workers in statistical
mechanics and field theory. I think every effort should be made to include
at least the first three (and possibly five) sections of this chapter in the course.

The ‘content of the remaining chapters is standard,-in the first ap-
proximation. The style is of course peculiar to this author, as are the
specific topics. For instance, an entire chapter (11) is devoted to symmetries
and their consequences. The chapter on the hydrogen atom alse contain:
- a section on how to make numerical estimates starting with a few mne-
monics. Chapter 15, on addition of angular momenta, also contains a sec-
tion on how to understand the *“‘accidental” degeneracies in the spectra of
hydrogen and the isotropic oscillator. The quantization of the radiation
field is discussed in Chapter 18, on time-dependent perturbation theory.
Finally the treatment of the Dirac equation in the last chapter (20) is in-
tended to show that several things such as electron spin, its magnetic
moment, the spin-orbit interaction, etc., which were introduced in an ad



X . Preface

hoc fashion in earlier chapters, emerge as a coherent whole from the Dirac
equation, and also to give students a glimpse of what lies ahead. This chapter
also .explains how Feynman resolves the problem of negative-energy
solutions (in a way that applies to bosons and fermions).

For Whom Is this Book Intended?

In writing it, I addressed students who are trying to learn the subject
by themselves; that is to say, I made it as self-contained as possible, included
a lot of exercises and answers to most of them, and discussed several tricky
points that trouble students when they learn the subject. But I am aware
that in practice it is most likely to be used as a class text. There is enough
material here for a full year gfaduate course. It iss however, quite easy to
adapt it to a year-long undergraduate course. Several sections that may be
omitted without loss of continuity are indicated. The sequence of topics
may also be changed, as stated earlier in this preface. I thought it best to
let the instructor skim through the book and chart the course for his or
her class, given their levelf of preparation and objectives. Of course the
book will not be particularly useful if the instructor is not sympathetic to
the broad philosophy espoused here, namely, that first comes the math-
ematical training and then the development of the subject from the postu- -
lates. To instructors who feel that this approach is all right in principle but
will not work in practice, I reiterate that it has been found to work in
practice, not just by me but also by teachers elsewhere.

The book may be used by nonphysicists as well. (I have found that it
goes well with chemistry majors in my classes.) Although F wrote it for
students with no familiarity with the subject, any previous exposure can only
be advantageous.

Finally, I invite instructors and students alike to communicate to me
any suggestions for improvement, whether they be pedagogical or in
reference to errors or misprints.
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Prelude

"Our description of the physical world is dynannc in nature and undergoes". :

- frequent change. At any given time; we summarize our knowledge of

. natural phenomena by means of certain laws. These laws adequately ‘_ _
“describe the phenomenon studied-up to that time, to an accuracy. then
attainable. As time passes, we enlarge the domain of observatfon and im-
prove the accuracy of measurement. As we do so, we constantly check to ~
see if the laws continue to be valid: Tﬂose laws that do remain valid gain in

stature; and those that do not must be abandoned in favor of new ones

that do.

‘In this changing picture, the laws of classical mechanics formulated
by Gahleo, Newton, and later by Euler, Lagrange, Hamilton, Jacobi,
and others, remained unaltered for almost three centuries. The expanding
domain of classical physics met its first obstacles around the beginning-of-
. this century. The obstruction came on.two fronts: at large velocities and
small (atomic) scales. The problem of large velocities was successfully -
©solved by Einstein, who gave us his relativistic mechanics, while the founders

of quantum mechanics—Bohr, Heisenberg, Schrddinger, Dirac, Born, and
othersr——solved the problem of small-scale physics. The union of relativity
and quantum mechanics, needed for the description of phenomena involving
simultaneously large velocities and smiall scales, turns out to be very difficult.
Although much progress has been made in this subject, called quantum
‘ﬁeld theory, there remain many open questions to this date. We shall
. concentrate here on just the small-scale problem, that is to say, on non-
-relauvnstlc quantum mechanics..
- The passage from classical to quantum mechanics has several features
that are common to all such transmons in which an old theory glves way
to a new one: ’

- (i) There is a domain D, of phenomena descrlbed by the new theory
and a subdomain D, wherein the old theory is reliable (to a given accuracy).

. bxvii
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(i) Within the subdomain D, either theory may be used to make
quantitative predictions. It might often be more expedient to employ .the
old theory. o

(iii) In addition to numerical accuracy, the new theory oftén brings
about radical conceptual changes. Being of a qualitative nature, these will
have a bearing on all of D,.

For example, in the case of relativity, D, and D, represent (macro-
scopic) phenomena involving small and arbitrary velocities, respectively,
the latter, of course, being bounded by the velocity of light. In addition
to giving better numerical predictions for high-velocity phenomena, rela-
tivity theory also outlaws several cherished notions of the Newtonian
scheme, such as absolute time, absolute length, unlimited velocities for
particles, etc. ‘

In a similar manner, quantum mechanics brings with it not only
improved numerical predictions for the microscopic world, but also con-
ceptual changes that rock the very foundations of classical, thought.

This book irtroduces you to this subject, starting from its postulates.
Between you and the postulates there stand three chapters wherein you
will find a summary of the mathematical ideas appearing in the statement of
the postulates, a review of classical mechanics, and a brief description of
the empirical basis for the qQuantumtheory. In the rest of the book, the
postulates are invoked to formulate and solve a variety of quantum rhe-
chanical problems. It is hoped that, by the time you, get to the end of
the book, you will be able to do the same yourself. :

~ Note to the Sﬁdent

Do as many exercises as you can, especially the ones marked * or
whose results carry equation numbers. The answer to each exercise is given
> -either with the exercise or at the end of the book. .

The first chapter is very important. Do not rush throixgh it. 'Even if
you know the math, read it to get acquainted with the. notation.

I .am not saying it is an easy subject. But I hope this book makes it
seem reasonable.

Good luck.
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Mathematical Introduction

The aim of this book is to provide you with an introduction to quantum
mechanics, starting from its axioms. It is the aim of this chapter to equip
you with the necessary mathematical machinery. All the math you will
need is developed here, starting from some basic ideas on vectors and
matrices that you are assumed to know. Numerous examples and exercises -
related to classical mechanics are given, both to provide some relief from
the math and to point out the wide applicability of the techniques you will
learn here. The effort you put into mastering this first and very important
chapter will be worth your while. The theory of linear vector spaces that
you will learn here will not only arm you for this course, but also unify
and clarify several ideas, related to vectors and matrices on the one hand,
and to functions and operators on the other. Approach this chapter any
way you wish, stooped over your desk or curled up in your couch; but in
all cases keep some pencils and paper handy to work out the problems.

1.1. Linear Vector Spaces: Basics

Definition 1. A linear vector space V is a set {V1, V2 V3 .} of
vectors, which may be added to each other and multiplied by scalars
{e, B, ...} in such a way that (a) the operations of addition and scalar
multiplication performed on the elements of ¥ yield only elements
of 7 (closure); (b) addition and scalar multiplication obey the fol-
lowing axioms.

Axioms for Addition. For arbitrary V;, V;, Vi of ¥

O V,+V;=V;+V, (commutativity)
() Vi+(V;+ V)= (Vi+V)+V ' (associativity)

1



2 Chap. 1 e Mathematical Introduction

(iii) There exists a unique null vector 0 in ¥ such that 0 - V, =
V,+0=V, (existence of identity element)

(iv) For each V; there is a unique inverse (—V;) in ¥ such that
V,+(=V)=10 (existence of inverse)

Those of you familiar with groups will see that the elements of a linear
vector space form a group under addition.

Axioms for Scalar Multiplication. For arbitrary V,, V;, «, and 8,

(V) Vi + V) =aV, + aV;
M) (o + BV, = aV; + BV,
(vii) a(BVy) = (ap)V,

There is a simple mnemonic that summarizes these axioms: do what
comes naturally.

Definition 2. The domain of allowed values for the scalars {a, §, ...}
is called the field  over which ¥ is defined. If F consists of all real
{complex) numbers, we have a real (complex) vector space. (Appendix
A.3 contains a brief introduction to complex numbers.)

Example 1.1.1. As an example of a vector space, let us consider the
set of all directed line segments, i.c., the set of arrows of definite length
and orientation that we use in physics to represent displacement, velocity,
force, étc. As it is, the set does not form a vector space; we must first
define addition and scalar multiplication. The addition law we choose is
of course the usual one: to add two arrows V and V', place the tail of V'
at the tip of V, and then their sum, V + V’, is given by the arrow running
- from the tail of V to the tip of V' (Fig. 1.1). One may add three or more
vectors by using the recipe on two vectors at a time. The null vector 0 is
defined to be an arrow of zero length, and the vector (—V) iswrelated to the
vector V by a reversal of direction. You may verify that these addition rules
obey all the four axioms (i)-(iv).

PA)
X

<i

Fig. 1.1. The rule for vector addition. Note that it
obeys axioms (i)-(iii). '

<4
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We next define scalar multiplication. The vector aV is defined to be
the vector V stretched by a factor a. This definition can be seen to meet -
the requirements (v)-(vii). Since « is necessarily real (for our definition
“stretched by «” to make sense), we have here a real vector space. [

Exercise 1.1.1.* Consider the set of all entities of the form (a, b, ¢), where
a, b, ¢ are real numbers. These form a vector space with addition and scalar
multiplication defined as follows: i

(@ bec)+(def)=(a+db+tect+f)
ala, b, c) = (oa, abh, ac)

Write down the null vector and the inverse of (a, b, c). Verify that axioms (i)-(iv)
are met. Do we have a vector space if a, b, ¢ are required to be positive numbers?
Show that vectors of the form (a, b, 1) do not form a linear vector space.

Exercise 1.1.2. By using the axioms prove the following:
(1) OV = (Hint: add 0V to aV)

(2) a0 =0 (Hint: add «0 to aV)

3) (—1)V =(=V) [Hint: add V to (—1)V]

Definition 3. A set of vectors {V;,V,, ..., V,} is said to be linearly
independent (LI) if there exists no linear relation among them of the

form
n

Y oV, =0 (1.1.1)

:
except the trivial one with all ;= 0.

This equation says that no member of the LI set can be written as a
linear combination of the others. In contrast, a linearly dependent set admits
a relation of the form Eq. (1.1.1) with not all «; = 0. In this case we can
express at least one vector as a linear combination of the others. For
instance if o5 7 0, we can divide by @; and rearrange Eq. (1.1.1) to get

V3 = Z ai'Vi; 'ai' = t
i=1 25}
#3

Definition 4. A vector space is n dimensional if it admits at most n
vectors that are LI

 We shall denote an n-dimensional space defined over a field F by
yn(F). Thus V*(R) [V»(C)] is an n-dimensional real (complex) vector
space. The dimensionality or field will be omitted wherever irrelevant.



