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Preface

Linear algebra has in recent years become an essential part of the mathematical
background required of mathematicians, engineers, physicists and other scientists.
This requirement reflects the importance and wide applications of the subject matter.

This book is designed for use as a textbook for a formal course in linear algebra
or as a supplement to all current standard texts. It aims to present an introduction to
linear algebra which will be found helpful to all readers regardless of their fields of
specialization. More material has been included than can be covered in most first
courses. This has been done to make the book more flexible, to provide a useful book
of reference, and to stimulate further interest in the subject.

Each chapter begins with clear statements of pertinent definitions, principles and
theorems together with illustrative and other descriptive material. This is followed
by graded sets of solved and supplementary problems. The solved problems serve to
illustrate and amplify the theory, bring into sharp focus those fine points without
which the student continually feels himself on unsafe ground, and provide the repetition
of basic principles so vital to effective learning. Numerous proofs of theorems are
included among the solved problems. The supplementary problems serve as a complete
review of the material of each chapter.

The first three chapters treat of vectors in Euclidedn space, linear equations and
matrices. These provide the motivation and basic computational tools for the abstract
treatment of vector spaces and linear mappings which follow. A chapter on eigen-
values and eigenvectors, preceded by determinants, gives conditions for representing
a linear operator by a diagonal matrix. This naturaily leads to the study of various
canonical forms, specifically the triangular, Jordan and rational canonical forms.
In the last chapter, on inner product spaces, the spectral theorem for symmetric op-
erators is obtained and is applied to the diagonalization of real quadratic forms. For
completeness, the appendices include sections on sets and relations, algebraic structures

and polynomials over a field.

1 wish to thank many friends and colleagues, especially Dr. Martin Silverstein and
Dr. Hwa Tsang, for invaluable suggestions and critical review of the manuscript.
I also want to express my gratitude to Daniel Schaum and Nicola Monti for their very

helpful cooperation.
SEYMOUR LIPSCHUTZ

Temple University
January, 1968
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Chapter 1

Vectors in R" and C”

INTRODUCTION

In various physical applications there appear certain quantities, such as temperature
and speed, which possess only “magnitude”. These can be represented by real numbers and
are called scalars. On the other hand, there are also quantities, such as force and velocity,
which possess both “magnitude” and “direction”. These quantities can be represented by
arrows (having appropriate lengths and directions and emanating from some given ref-
erence point O) and are called vectors. In this chapter we study the properties of such
vectors in some detail.

We begin by considering the following operations on vectors.

(i) Addition: The resultant u+v of two vectors u
and v is obtained by the so-called parallelogram
law, i.e. u+ v is the diagonal of the parallelogram
formed by u and v as shown on the right.

(ii) Secalar multiplication: The product ku of a real
number k by a vector u is obtained by multiplying
the magnitude of u by k£ and retaining the same
direction if k=0 or the opposite direction if
k<0, as shown on the right.

Now we assume the reader is familiar with the representation of the points in the plane
by ordered pairs of real numbers. If the origin of the axes is chosen at the reference point
O above, then every vector is uniquely determined by the coordinates of its endpoint. The
relationship between the above operations and endpoints follows.

(i) Addition: If (a, b) and (¢, d) are the endpoints of the vectors u and v, then (a +¢, b +d)
will be the endpoint of u + v, as shown in Fig. (a) below.

(a +¢, b+ d)

¥ ). ki (ka, kb)

(a, b)
L (a,b)

Fig. (a) Fig. (b)

(ii) Scalar multiplication: If (a,b) is the endpoint of the vector u, then (ka, kb) will be the
endpoint of the vector ku, as shown in Fig. (b) above.
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Mathematically, we identify a vector with its endpoint; that is, we call the ordered pair
(a, b) of real numbers a vector. In fact, we shall generalize this notion and call an n-tuple
(a1, @z, . ..,an) of real numbers a vector. We shall again generalize and permit the co-
ordinates of the n-tuple to be complex numbers and not just real numbers. Furthermore, in
Chapter 4, we shall abstract properties of these n-tuples and formally define the mathe-
matical system called a vector space.

We assume the reader is familiar with the elementary properties of the real number
field which we denote by R.

VECTORS IN R»

The set of all n-tuples of real numbers, denoted by R*, is called n-space. A particular
n-tuple in R®, say
u = (ul, U2 ooy un)
is called a point or vector; the real numbers w; are called the components (or: coordinates)
of the vector u. Moreover, when discussing the space R* we use the term scalar for the
elements of R, i.e. for the real numbers.

Example 1.1: Consider the following vectors:
0,1, (1,-3), (1,2,V3,4), (-54,0,7)

The first two vectors have two components and so are points in R2; the last two
vectors have four components and so are points in R%.

Two vectors # and v are equal, written % = v, if they have the same number of com-
ponents, i.e. belong to the same space, and if corresponding components are equal. The
vectors (1,2, 3) and (2,3, 1) are not equal, since corresponding elements are not equal.

Example 1.2: Suppose (x—y, x+y,z—1) = (4, 2,3). Then, by definition of equality of vectors,

c—y = 4
x+y = 2
z—1 =38
Solving the above system of equations gives = 3, y = —1, and 2z = 4.

VECTOR ADDITION AND SCALAR MULTIPLICATION

Let u and v be vectors in R™
u = (U, U2, ..., %) and v = (Vi, V2, ..., Vn)
The sum of w and v, written u + v, is the vector obtained by adding corresponding components:
U+ v = (U +v1, U+ Vo, ..., Un + V)

The product of a real number k by the vector u, written ku, is the vector obtained by multi-
plying each component of u by k:
ku = (kul, k'u:z, o 0y kun)

Observe that u +v and ku are also vectors in R*. We also define
—u = —1lu and u—v = u+(-—v)

The sum of vectors with different numbers of components is not defined.
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Example 1.3: Let w = (1,-3,2,4) and v = (3,5, —1, —2). Then

u+v = (1+3,-34+52—-1,4—2) = (4,2,1,2)
50, = (5+1,5+(=3),5+2,5+4) = (5, 15,10, 20)
2u — 3v = (2,—6,4,8) + (-—9,—15,3,6) = (—7,—21,17, 14)
Example 14: The vector (0, 0, ..., 0) in R, denoted by 0, is called the zero vector. It is similar
to the scalar 0 in that, for any vector u = (uy, uy, ..., %,),
w+0 = (u+0,u+0, ...,u,+0) = (U, Uy ..., ) = U

Basic properties of the vectors in R* under the operations of vector addition and scalar
multiplication are described in the following theorem.

Theorem 1.1: For any vectors u,v,w € R* and any scalars k, &’ € R:
(i) (w+v)+w = u+ (v+w) (v) Fku+v) = ku+kv
(ii) v+0 =u (vi) (k+Kk)u = ku+ Ek'u
(iil) v+ (~u) = 0 (vil) (kkYu = k(k'u)
( (

iv) u+ov = v+u viii) lu = u

Remark: Suppose % and v are vectors in R* for which « = kv for some nonzero scalar
k € R. Then u is said to be in the same direction as v if k> 0, and in the op-
posite direction if k <O0.

DOT PRODUCT
Let w and v be vectors in R™
U = (U1, Uz, ..., %) and v = (V1, V2 ..., Vn)
The dot or inner product of # and v, denoted by u - v, is the scalar obtained by multiplying
corresponding components and adding the resulting products:
UV = UV1 + UV2 + - + UpUn
The vectors w and v are said to be orthogonal (or: perpendicular) if their dot product is
zero: u-v =0.
Example 1.5: Let u = (1,—2,8,—4), v=(6,7,1,—2) and w = (5,—4,5,7). Then
wev = 146+ (—2)+7 + 31+ (—4)+(—2) = 6 — 14 +3+8 = 3
wrw = 15+ (—2)+(—4) + 8+5 + (—4)+7 = 5+ 8+ 15 —28 = 0

Thus # and w are orthogonal.

Basic properties of the dot product in R" follow.
Theorem 1.2: For any vectors u,v,w € R* and any scalar k € R:
(i) wt+v)w =uw+v-w (iil) u-v = v-u
(ii) (ku):v = k(u-v) (iv) wu=0, and u-u=0 iff u=0

Remark: The space R® with the above operations of vector addition, scalar multiplication
and dot product is usually called Euclidean n-space.

NORM AND DISTANCE IN R»

Let 4 and v be vectors in R® % = (41, %2, ...,%.) and v = (V1,V2, ...,Vn). The dis-
tance between the points v and », written d(u, v), is defined by

d-,(u, v) = \/(u1 — ’2)1)2 + (uz - ?}2)2 w alah s (’bLn - ’Un)2
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The norm (or: length) of the vector u, written |||, is defined to be the nonnegative square
root of u-u:

|| = Vurw = Ve +ud+ - +u2
By Theorem 1.2, %+u% =0 and so the square root exists. Observe that
d(w,v) = [ju— vl
Example 1.6: Let = =(1,—2,4,1) and v» = (3,1,—5,0). Then
dw,v) = VI =32+ (—2—12+ @ +5)2+ (1-02 = V95
llo]] = V32 + 12+ (=52 + 02 = /35

Now if we consider two points, say » = (a,b) and ¢ = (¢,d) in the plane R?, then
Ip|| = Ve +b2  and d(p,q) = V(a—c¢)p+ (b—d)?

That is, ||p|| corresponds to the usual Euclidean length of the arrow from the origin to the
point p, and d(p, q) corresponds to the usual Euclidean distance between the points p and
q, as shown below:

A similar result holds for points on the line R and in space R3.

Remark: A vector e is called a unit vector if its norm is 1: |le|| = 1. Observe that, for
any nonzero vector » € R", the vector e, = u/||lul| is a unit vector in the same
direction as w.

We now state a fundamental relationship known as the Cauchy-Schwarz inequality.

Theorem 1.3 (Cauchy-Schwarz): For any vectors w,v € R, |u-v| = |ul| ||v|].

Using the above inequality, we can now define the angle ¢ between any two nonzero
vectors u,v € R* by ‘
n-v
cosf = T
(el |||
Note that if %-v =0, then 6 =90° (or: #==/2). This then agrees with our previous
definition of orthogonality.

COMPLEX NUMBERS

The set of complex numbers is denoted by C. Formally, a complex number is an
ordered pair (e, b) of real numbers; equality, addition and multiplication of complex num-
bers are defined as follows:

(a,b) = (¢,d) iff a=c and b=d
(a, b) + (¢, d) = (a+¢c, b+d)
(@, b)(¢, d) = (ac—bd, ad + be)
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We identify the real number a with the complex number (a, 0):

a < (a,0)
This is possible since the operations of addition and multiplication of real numbers are
preserved under the correspondence:

(a,0) + (b,0) = (¢+0,0) and (a, 0)(b, 0) = (ab, 0)
Thus we view R as a subset of C and replace (a,0) by a whenever convenient and possible.
The complex number (0, 1), denoted by ¢, has the important property that
? =4 = (0,1)0,1) = (-1,0) = -1 or = -1
Furthermore, using the fact
(a,b) = (a,0)+(0,b) and (0,b) = (b, 0)(0, 1)
we have (a,b) = (a,0)+ (b, 0)(0,1) = a+ bi

The notation @ + bi¢ is more convenient than (a,b). For example, the sum and product of
complex numbers can be obtained by simply using the commutative and distributive laws
and = —1:

(a+bt) +(c+di) = a+c+bi+di = (atc)+ (b+dn
(@ +bi)(c+di) = ac + bei + adi + bdi* = (ac — bd) + (be + ad)i
The conjugate of the complex number z = (a,b) = a+bi is denoted and defined by
Z = a—0bi
(Notice that 2z = @2+ b2) If, in addition, z+ 0, then the inverse z~! of z and division by

z are given by
2 a -b . 2

-1 = = = — = wz !
i 2z ET0 T ] 2 "
where w € C. We also define
—2z=-1z2 and w-—-2 = w+(—2)

Example 1.7: Suppose z=2+3{ and w =5—2i. Then
z+w = 2+3)+5—-2) = 24+5+31—21 = T+
2w = (24 38)(5—2i) = 10+ 150 — 4i — 62 = 16 + 114
2=2+8 =2-3 and w = 5—-2i = 5+ 2i

w 5— 21 (56— 21)(2 — 37) 4 — 191 4 19,

= = = = Za " Tl

T 243 (2+3)@2-3) 13 13 13
Just as the real numbers can be represented by the
points on a line, the complex numbers can be represented
by the points in the plane. Specifically, we let the point blb—— o — ——— vz = a+ Bi
(@, b) in the plane represent the complex number z = a + bz, "
i.e. whose real part is @ and whose imaginary part is b. The -
absolute value of z, written |z|, is defined as the distance
from z to the origin:

2| = Va*+ b®

Note that || is equal to the norm of the vector (a,b). Also, [z| =V/2Z.

o —e—e——

Example 1.8: Suppose 2z =2+3i and w =12 —5i. Then

Wl = VAFS = VI3 and [w = VIIT % = 13
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Remark: In Appendix B we define the algebraic structure called a field. We emphasize
that the set C of complex numbers with the above operations of addition and
multiplication is a field.

VECTORS IN C*

The set of all n-tuples of complex numbers, denoted by C», is called complex n-space.
Just as in the real case, the elements of C” arve called points or vectors, the elements of C
are called scalars, and vector addition in C* and scalar multiplication on C* are given by

(21, 22, ooy 2a) + (W, w0, . ,w) = (i b za W, L., 2 00)
2(21, 22, ...y Zn) (221, 229, ..., 22)
where z;, w;, z € C.
Example 1.9: @2+38i,4—14,3) + (3--2¢,bi,4—6i)) = (54,4442, T 67)
21(2+38i,4—1,3) = (—6-+4i, 2+ 84, 61)
Now let # and v be arbitrary vectors in C:
U = (21,22 ..., %), o= (w0, W, L., W0,), zi,w; € C
The dot, or inner, product of » and » is defined as follows:
UV = 2y + 20000 + -+ oo b 2,0

Note that this definition reduces to the previous one in the real case, since w; = @; when
; is real. The norm of « is defined by

|| = Vuru = Vaidi+ 2 + - 4 2.2, = ViaP + |zl + -+ |z

Observe that u-u and so |u]

are real and positive when % -0, and 0 when % = 0.

Example 1.10: Let « = (2134, 4 -4 2) and » — (321, 5,4—6i). Then
wew = (24303 —2i) + @—1)(5) + (24— 61)
= (2 183 4 20) + (4—9)(5) + (20)(4 + 60)
= 1387 -+ 20 — 52 12 + 8 = 8 + 164
wen = (24302130 + (4 —D{E 1) + (20)(20)
(2F80)(2—30) + (4 — D)4+ 1) + (20)(—20)
13 4+ 17+ 4 = 34
ull = Varu = V3
The space C* with the above operations of vector addition, scalar multiplication and dot

product, is called complexr Euclidean n-spece.

Remark: If w-v were defined by w-v» = 200+ -« + 2,0, then it is possible for
u*u =10 even though » 0, eg. if »=(1,7,0). In fact, u-u may not even
be real.
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Solved Problems

VECTORS IN R

L1. Compute: (i) (3,—4,5) + (1,1,-2); (ii) (1,2, -3) + (4, —5); (ili) —3(4, —5, —6);
(iv) —(—6, 1T, —8).
(i) Add corresponding components: (3,—4,5) + (1,1,—2) = (83+1,—4+1,5—2) = (4,—3,3).
(ii) The sum is not defined since the vectors have different numbers of components.
(iii) Multiply each component by the scalar: —3(4,—5,—6) = (—12, 15, 18).
(iv) Multiply each component by —1: —(—6,7,—8) = (6,—1, 8).

1.2. Let u=(2,-7,1), »=(-3,0,4), w=(0,5,—-8). Find (i) 3u—4v, (ii) 2u+3v—5w.
First perform the scalar multiplication and then the vector addition.
(i) 3Bu—4v = 3(2,-7,1) —4(-3,0,4) = (6,21, 3) + (12,0, —16) = (18, —21, —13)
(ii) 2w + 3v — bw = 2(2, —7,1) + 3(=3, 0, 4) — 5(0, 5, —8) '
= (4, —14, 2) + (=9, 0, 12) + (0, —25, 40)
(4—9+0,—-14+0—25,2+ 12+ 40) = (=5, —39, 54)

I

13. Find « and y if (x,3) = (2, x + ).
Since the two vectors are equal, the corresponding components are equal to each other:
© = 2 3 =ax+y

Substitute « = 2 into the second equation to obtain y =1. Thus « =2 and y = 1.

14. Find x and ¥ if (4,y) = x(2, 3).
Multiply by the scalar = to obtain (4, %) = x(2, 3) = (2z, 3x).
Set the corresponding components equal to each other: 4 = 2z, y = 3.

Solve the linear equations for x and y: = =2 and y = 6.

1.5. Find «. y and z if (2,-3,4) =«(1,1,1)+y(1,1,0)+2(1,0,0).
First multiply by the scalars x, ¥ and z and then add: -
(2, —-3,4) = =(1,1,1) + y(1,1,0) + 2(1, 0, 0)
(>, x, ) + (¥, 9, 0) + (2, 0, 0)
(x+y+z xt+y,x)

I

Now set the corresponding components equal to each other:
r+y+z = 2 x+y = =3, r = 4

To solve the system of equations, substitute = = 4 into the second equation to obtain 4+y = —3
or y = —T7. Then substitute into the first equation to find z =5. Thus =4, y = -7, z = 5.

1.6. Prove Theorem 1.1: For any vectors wu,v,w € R* and any scalars k,k” € R,

(i) (@w+v)+w = v+ (v+w) (v)  ku+wv) = ku+ kv
(il) v+0 = (vi) (E+K)u = ku+ ku
(ili) w+(~u) = 0 (vii) (kK )u = k(k'u)

(iv) u+v = v+u (viii) 1u = u

Let u;, v; and w; be the ith components of u, » and w, respectively.
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(i) By definition, u; + v; is the ith component of v +v and so (u;+ v;) +w; is the ith component
of (u+wv)+w. On the other hand, v; + w; is the ith component of v+ and so u; + (v; + w;)
is the ith component of u -+ (v + w). But u;, v; and w; are real numbers for which the as-
sociative law holds, that is,

(w; +v) +w; = w; + (v, +w) for i1=1,...,m

Accordingly, (u+v) + w = u+ (v-+w) since their corresponding components are equal.
(ii) Here, 0 = (0,0, ..., 0); hence
w40 = (uy, Uy, ..., u,) + (0,0, ...,0)
= (u+0,uy,+0, ..., %,+0) = (uy, U, ..., %,) = u

(iii) Since —u = —1(wg Uy ..y %) = (—Uy, — Uy ooy —Up),
w+ (—u) = (g, Uy, ., U,) T (U, Uy, L, —,)
= (U —Up, Ug— U, + ooy Uy —y,) = (0,0, ...,0) = 0

(iv) By definition, u; + v; is the ith component of w + v, and v; + u; is the ith component of v + u.
But u; and v; are real numbers for which the commutative law holds, that is,

u; +v; = v+ ou, t=1,...,m
Hence #-+v = v+ % since their corresponding components are equal.
(v) Since u; + v; is the ith component of u + v, k(u; + »;) is the ith component of k(w - v). Since

ku; and kv; ave the ith components of ku and kv respectively, ku; + kv; is the ith component
of ku -+ kv. But k, u; and v; are real numbers; hence

k(u; +v) = ku; + kv, 1=1;...0
Thus k(u+wv) = ku + kv, as corresponding components are equal.

(vi) Observe that the first plus sign refers to the addition of the two scalars k and k¥’ whereas the
second plus sign refers to the vector addition of the two vectors ku and k'u.

By definition, (k + %')u; is the ith component of the vector (k+ k")u. Since ku; and k',
are the ith components of ku and k'u respectively, ku; + k'w; is the ith component of ku + k'u.
But &, k' and u; are real numbers; hence

(k+ENu; = ku; + k'uy, i=1,...,n
Thus (k+k'Yu = ku + k'u, as corresponding components are equal.

(vii)  Since k'u; is the ith component of k', k(k'w;) is the ith component of k(k'u). But (kk')u; is the
ith component of (kk')u and, since k, k' and u; are real numbers,

(klyu; = k(k'w), i=1,...,n

Hence (kEk')u = k(k'u), as corresponding components are equal.

(viii) 1 ew = L(ug, Uy, - . .5 2p) = (Loeg, Ty, .oy Tuy) = (uyg, s, - - ., Uy,) = U

1.7. Show that Ow = 0 for any vector w, where clearly the first 0 is a scalar and the second
0 a vector.

Method 1: Ou = O0(uy, Uy, ..., uy) = (Ouy, Ous, ..., 0u,) = (0,0,...,0) = 0
Method 2: By Theorem 1.1, Ou = (0+0)u = Ou+ Ou
Adding —0u to both sides gives us the required result.

DOT PRODUCT

1.8. Compute u-v where: (i) v = (2,-3,6), v =(8,2,-3); (ii) v=(1,-8,0,5), v =(3,6,4);
(il) »=(3,-5,2,1), v=(4,1,-25).
(i) Multiply corresponding components and add: %+v = 28 4+ (—3)+2 + 6+(—3) = —8.
(i) The dot product is not defined between vectors with different numbers of components.

(iii) Multiply corresponding components and add: w-+v = 8+4 + (=5)«1+ 2+(=2) + 15 = 8.
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1.9. Determine & so that the vectors # and v are orthogonal where
(i) w = (1, % —3) and v = (2,5, 4)
(i) w = (2,8k, —4,1,5) and v = (6, —1, 3,7, 2k)

In each case, compute u * v, set it equal to 0, and solve for k.

() uev = 12+ k(-5 + (-3)+4 = 2—5k—12 = 0, —5k—10=0, Fk=—-2
(i) u*v = 26+ 3k+(—1) + (—4)+3 + 1+7 + 5.2k
= 12 -8k — 12+ 7+ 10k = 0, k=—1

1.10. Prove Theorem 1.2: For any vectors u,v,w € R* and any scalar k € R,

(i) w+v)*w =uw+v-w (iii) u*v = v-u
(il) (ku)-v = k(u-v) (iv) v~ =0, and wu =0 iff =20
Let u = (ug,ug,y ... %), ¥ = (V1,09 ...,0,), W= (W, Ws, ...,W,).
(i) Since u+ v = (u;+vy, s+ vy, ..., u, +vy),
(w+v)rw = (uy+v)w; + (ug +vodwy + -+ + (u, +v)w,
= ww; + vywy + uswe + vowy + -+ + uw, + v,w,
= (uywy + ugwo + - -+ + uywy,) + (vyw; + vowy + ¢+ - +v,w,)

= uwtovew
(ii) Since ku = (kuy, ku,, ..., kuy,),
(kw) *v = kuwy + kugvy + -+ + kuyw, = k(ugvy +ugvg+ -+ +u,w,) = k(uev)
(ili) v = wuvy + U0y + <+ +uw, = ViU + VU + o VU, = VU
(iv) Since u? is nonnegative for each i, and since the sum of nonnegative real numbers is non-
negative, I uf+u§—!—---+uﬁ S

Furthermore, w+w =0 iff u; =0 for each 17, that is, iff « = 0.

DISTANCE AND NORM IN R~

1.11. Find the distance d(u, v) between the vectors » and v where: (i) v =(1,7), v = (6, —5);
(ii) w=(3,—5,4), v=(6,2,—1); (iii) »=(5,3,—-2,—4,-1), v=(2,—-1,0,-7,2).

In each case use the formula d(u, v) = V(u; —v)2 + -+« + (u, —v,)2.

() du,v) = VA—62+ (T+5)2 = V25 + 144 = /169 = 13

(i) da,v) = V@—62+ (—5—2)2+ (4+1)2 = V9 +49 +25 = /83

(i) dw,v) = V6—22+ B+1)2+ (—2402+ (—4+72 F (—1—2)2 = /47
1.12. Find k such that d(w,v) =6 where w=(2,k,1,—4) and » = (3,—1,6,—3).
(A, )2 = (2—38)2+ (k+1)24+ (1—6)2+ (—4+3)2 = k2 + 2k + 28

Now solve k2 + 2k 4+ 28 = 62 to obtain k = 2, —4.

1.13. Find the norm ||u|| of the vector u if (i) u = (2,—7), (ii) » = (3,—12,—4).

In each case use the formula [lul| = \/u% +ul+ oo+l
(i) |l = V22+ (=72 = V4a+49 = V53
i) [Jul] V32 + (—12)2 4 (—4)2 = V9 + 144 + 16 = V169 = 13

Il
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1.14. Determine % such that |jul| = /39 where u = (1,%k, —2,5).
llaf]2 = 124 K2+ (—2)2 + 52 = k2 + 30

Now solve k24 30 = 39 and obtain k£ = 3, —3.

1.15. Show that ||u||=0, and |ju|| =0 iff »=0.
By Theorem 1.2, u*« =0, and w+u =0 iff «=0. Since |[lu|| = Vu+u, the result follows.

1.16. Prove Theorem 1.3 (Cauchy-Schwarz):

For any vectors u = (u1, ...,%s) and v = (v1,...,va) in R, |u-v| = ||ul| ||v]].

n
We shall prove the following stronger statement: |u+v| = 3 |uw| = ||lul| ||v]].
i=1

If w=0 or v =0, then the inequality reduces to 0 = 0 = 0 and is therefore true. Hence we
need only consider the case in which w # 0 and v # 0, ie. where [lu|]| # 0 and |[[v|| # 0.
Furthermore,

leev] = |uwg+ oo Fugwy| = lugyy| + o0+ lugv,| = S |uy|

Thus we need only prove the second inequality.
Now for any real numbers z,y €ER, 0 = (x—y)2 = 2 — 22y + y2 or, equivalently,
20y = 22+ y? (1)

Set « = |ul/||v|| and y = |v;|/||v]| in (Z) to obtain, for any 1,

lu_sl _[ﬂ = Juil? |vil2 (2)
[fael] [[]] el lof]2
But, by definition of the norm of a vector, |ju|| = Sul = 3 |w)2 and ||v|| = S+ = 3 |v;|2. Thus
summing (2) with respect to 7 and using |uv;| = |u;| |v;|, we have
Sl _ Sl | Sl P | .
[fael] [l1] [[2e] ]2 [lv]]2 llullz " [lo]]2
3 |uil
that is, T 1
[l 1]l

Multiplying both sides by ||«|| [|v||, we obtain the required inequality.

1.17. Prove Minkowski’s inequality:
For any vectors % = (w1, ..., %) and v = (v, ...,v,) in R, |lu+ || = |ju|| + [|v||.
If ||u+ || =0, the inequality clearly holds. Thus we need only consider the case |{u+ v|| # 0.
Now |u;+ ;| = |u;] + |v;] for any real numbers u;v; € R. Hence
fle+9)2 = S+ = 3lutof?
Sty +o] = 3wt ol (gl + o)
2w+ vyl Ju] + 3w+ vy vy

Il

But by the Cauchy-Schwarz inequality (see preceding problem),
Slutollu] = lletoll|lull  and  Zlwytollvl = |lutof (vl
Thus etz = flutol [lul] + |[u+ol] llo]l = [+ ]| (lul] + [lv]])

Dividing by ||« + v||, we obtain the required inequality.
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1.18. Prove that the norm in R” satisfies the following laws:
[Ni]: For any vector %, |ju||=0; and |[u||=0 iff v =0.
[N:]: For any vector u and any scalar k, ||ku|| = |k| ||u]|.
[Ns]: For any vectors v and v, |ju + v|| = |[u|| + ||v]].
[N4] was proved in Problem 1.15, and [N3] in Problem 1.17. Hence we need only prove that

[N3] holds.
Suppose w = (uy,us, ...,u,) and so ku = (ku, kuy, ..., ku,). Then
[eul> = (kup)? + (kug)® + --- + (kup)? = k23 + k%2 + -+ + k2ug
= RKRuitui+-o-+ud) = k|2

The square root of both sides of the equality gives us the required result.

COMPLEX NUMBERS

1.19. Simplify: (i) (5+8i)@2—Ti); (ii) (4—3d)% (iii) 3%4%.; (iv) 2= L

4 (V) is, ,i4’ 1:81;

1 A 5+ 3i
vi) (1+22)%; (vii <——> s
(vi) ( )?5 (vii) 5_3;
()  (5+38)@2—Ti) = 10 + 6i — 35i — 212 = 31 — 29;
() (4—38)2 = 16 —24i+ 92 = 7 — 245
1 (3 + 44) _ 344 _ 3, 4.
) =% = G-me+ay = 25 25 a5’
Gv) 200 @-TOG-3) _ —11-—41i 1141,
W5 ¥3 T (+3)(5-—3) 34 T T34 34
(v) # = 2 = (—1)i = —4; @ = 22 = 1; Bl = ()73 = 17+(—1) = —i
(vi) (1+2)3 = 1+6i+122+83 = 1+6i—12—8 = —11 —2i
(vi) 1 >2 _ 1 _ (—5 + 12i) _=b+12i _ _ 5 12,
2 — 3i —5—12{ = (—=5—12i)(=5+127) 169 T 169 169

1.20. Let z2=2-37 and w =4+5¢ Find:
(i) z+w and zw; (ii) 2/w; (iii) 2 and w; (iv) |2| and |w|.
(i) z+w = 2-—-3i+4+5i = 6+ 2
2w = (2—38i)(4+5i) = 8 —12¢+ 10¢ — 152 = 23 — 21

Gy Zo— 208 (2-3)@—5) _ 722 _ 7 22,
Wow T 4+ 5 @+s)Ad—5) 4 41 4

(iii) Use a+bi=a—bi: z2=2—-3i=2+3i; w=4+5i=4—5i

(iv) Use la+bi] = Va®2+b% |o| =|2—3i| =Va+9=13; |w| =|4+5i =V16+25 = V41.

1.21. Prove: For any complex numbers z,w € C,
() z¥w=z2+w, (i) zw=2zw, (iii) z=z.
Suppose z=a+bi and w =c+di where a,b,c,d €ER.
(i) z4+w = (a+bi) + (c+di) = (a+¢)+ (b+d)
= (a+e)—(b+d)i = a+c—bi—di
= (a—bi)+(c—di) = 2+ w

(if) 2w = (a-+bi)lc+di) = (ac— bd) + (ad + be)i
= (ac—bd) — (ad+ bec)r = (a— bi)(c— di)

Il
w
g

Gii) 2 = a+bi = a—bi = a—(—b)i = a+ bi

i
n



