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Preface -

Time series analysis is one of the most flourishing of the fields of present day
statistics, Exciting deve'opments are taking place: in pure theory and in
practice, with broad relevance and with narrow. intent, for large samples and
for small samples. The flourishing results in part, from the dramatic inc in
the availability of computing power for both number crunching and for
graphical display and in part from a compounding of knowledge as more and
more researchers involve themselves with the problems of the field.

This volume of the Handbook of Statistics is concerned particularly with the
frequency side, or spectrum, approach to time series anlalysis. This approach
involves essential use of sinusoids and bands of (angglar) frequency, with
Fourier transforms playing an important role. A principa¥ activity is thinking of
systems, their inputs, outputs, and behavior in sinusoidal/terms. In many cases,
the frequency side appspach turns out to be simpler in éach of computational,
mathematical, and statistical respects. In the frequency(’ approach, an assump-
tion of stationarity is commonly made. However, the essential roles played by
the techniques of complex demodulation and seasonal adjustment show that
stationarity is far from a necessary condition. So too are assumptions of
Gaussianity and linearity commonly made. As various of the papers in this
Volume show, nor are these necessary assumptions :

The Volume is meant to represent the frequency approach to time series
‘analysis as it is today. Readers working their way through the papers and
references included will find themselves abreast of much of contemporary
spectrum analysis.

We wish to express our deep appreciation to Professors E. J. Hannan and M.
B. Priestley for serving as members of the editorial board. Thanks are due to
Professors P. Guttorp, E. J. Hannan, T. Hasan, J. Lillestgl, and M. B. Priestley
for refereeing various chapters in the volume. We are most grateful to the
authors and North-Holland Publishing Company for their excellent coopera-

- tion in bringing out this volume.

- D. R. Brillinger
P. R. Krishnaiah
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‘ Wiene; Filtéring .
- (with emphasis on frequency-domain approaches)

R. J. Bhansali and D. Karavellas

1. Introductioa

Let {y, %} (¢=0,%1,...) be a bivariate process, An important class of
problems considered in time-series analysis may be formulated in terms.of the
problem: How can we best predict y, from {x, s <#}? If y. = Xy, ¥ >0, then

" the problem is that of predicting the ‘future’ of x, qn the basis of its past. If
x, = & + &, where £, is ‘noise’ and ¢ the ‘signal’ and y; = &+» then for » =0 the
problem is that of ‘signal extraction’, for » >0 that of predicting the signal and
for » <0 that of interpolating the signal, in the presence of noise. If y, and x,
are arbitrary, then the problem is simply that of predicting one series - from
another. This last problem is itself of interest in a number of disciplines: for
example, in Economics, interest is often centred on obtaining a distributed lag
relationship between two economic variables (see, e.g., Dhrymes [11]) such as
level of unemployment and the rate of inflation.

A complete solution to the problem of predicting y, from the. past, {x,s=1t},
of x, would consist of giving the conditional probability distribution of the
random variable y, when the observed values of the random variables {x,, s <1}
are given. However, this is seldom practicable as finding such a conditional
distribution is usually a formidable problem. A simplifying procedure of taking
the mean value of this conditional distribution as the predictor of y, is also
rarely feasible because this mean value is in general a very complicated
function of the past x’s. Progress may, however, be made if {y, x.} is assumed
to be jointly stationary and attention is restricted to the consideration of the
linear least-squares predictor of y, i.c. the best predictor, #$« say, of y, is chosen
from the comparatively narrow class of linear functions-of {x,, s <1},

5= RGN o (w1

‘the coefficients h(j) being chosen on the criterion that the mean square error
of prediction
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n’=E($i-nf ‘ (1.2

be a minimum.

Formation of §, from the {x,, s =<t} may be viewed as a filtering operation

applied to the past of x,, and, especially in engineering literature, ¥, is known as
the Wiener filter.

It should be noted that if {y, x,} is Gaussian, then the linear least-squares
predictor, y, of y, is also the best possible predictor in the sense that it
minimises the mean square error of prediction within the class of all possible

predictors of y,; hence for the Gaussian case the consideration of only linear
predictors is not a restriction.

2. Derivation of the filter transfer function and the filter coefficients

Suppose that {y, x;} (t =0, *1,...) is real-valued jointly stationary with zero
means, i.e. Ex,= Ey,=0. If the means are nonzero, then these may be
subtracted out. Let Ry (u)= E(x.+.X;) and R,,(u) = E(yi+.y:) denote the auto-
covariance functions of x, and y, respectively, and let R,.(#)= Ey..x, denote
their cross-covariance function. Assume that

3 Ra@l<®, S Rywl<e, D IRL@l<

and let

fud)= Q7" S Ru(u)esp(-imh),

f,A)=@m)" S R, (u)exp(—imr)

e \

b
denote the power spectral density functions of x, and y, respectively, and

frA) = @m)™" 2 Ryx(u)eXp(—llM)

U=—co

their cross-spectral density function. Assume also that fx (A) #0 (o <A <®).
Under these conditions x, has the one-sided movmg average representation
(see Billinger [9, p. 78])

5 =3 b(ey, bO=1, @1)

i=0

and the autoregressive representation



Wiener filtering 3

> a()x; =2, a@)=1. - Q2
=0
Here ¢, is a sequence of uncorrelated randoih vanébles w1th 0 mean and finite
variance o2, say, and the {b( ])} and {a(j)} are absolutely summable coeflicients,

i.e. they satisfy

Shii<e,  $lag)<e.

_j=0 j=0

Also, if | -

B(z)= 20 b))z, A@)= }% a(j)z’, 2.3)
i= j=0 .
respectively, denote the characteristic polynomials of the b(j) and the a(j),
then B(z)#0, A(z) #0, |zl=<1 and A(z)={B(z)}. The transfer functions
B(e™) and A(e™) of the b(j) and a(j) are denoted by B(A) and A(A)
respectively. We have A(A)={B(A)}"*! and fa(A) = s 2a) BQA)R. "

If fo(A) is known exactly, then the {b(j)} and {a(j)} may be determined, by
the Wienér-Hopf spectral factorization procedure (Wiener [25, p. 78]). The
‘assumptions made previously on’ Ry () and folX) ensure that log fa(A) is
~ integrable and hence has the Founer senoa cxpansnon

log fu(A) = 5: c(v) exp(~ivA )';. L 2.4)
with S R : -
c(w)= @m)"! f log f(A) exp(ivA) dA @.5)
and A
> le@) <.
Set
B(\)= exp{ >, c(v) exp(-ivA )} , 2.6)
AQA)={BQ)}" 7
and
. o2 =2 exp{c(0)} . : ' (2.8)
Then
bG)=@m [ B)expin) i, @9)
a(j)= Qay* L' AQ\) expGijA)dA, 2.10)

and the {b(j)} and {a(j)} thus obtained are absolutely summable (Brillinger {9,



4 R. J. Bhansali and D. Karavellas

p. 79]); see also Doob [12, pp. 160-164] and Grenander and Rosenblatt [16, pp.
67-81] for related work. : .

Next, consider prediction of y, from the past, {x,s=<{¢}, of x, and in
particular the determination of the filter coefficients h(j) of the linear least-
squares predictor §; of y. The mean square error of prediction n? is given by

7= Ry®= 25 h(DRw()+ 3, 3 MDA (KIRalk - h. e

j=0 k=0

If the h(j) minimise n? then we must have 39%dh(j)=0 (j=0,1,.. .). This
requirement leads to the equations . o

3 R~ =Ru) G=01,..). L en

That the h(k) satisfying (2.12) also minimise 5 may be established by using an
argument analogous to that given, for example, by Jenkins and Watts [18, pp.
204-2051. _ )

Equations (2.12) provide discrete analogues of the Wiener-Hopf integral
equations (Wiener [25, p. 84]). As their left-hand side is of the form of a
convolution, the use of Fourier series techniquesis a natural approach to adopt for
solving them. However, as discussed by N. Levinson (see {25, p. 153]) adirect use
of the Fourier series techniques for obtaining the h(j) is not feasible as well,
because (2.12) is valid only for j = 0. Therefore, a somewhat indirect approach is
adopted for expressing h(j) in terms of f,,(A) and f(1).

The representation (2.1) implies that

Ro(u)=023 b(s)b(s+u) (=0,1,...). @.13)
Put =

D)= £ (AR = uiﬁd(u) e, 2.14)
and

(DO = io d(u) exp(-imr), : @.15)
where .

d(@) = @y [ (VA expliua) dr (2.16)
and

3 ldw) <e.

Note that 27d(u) = E(ye&.-,) and D()A) gives the cross-spectral density
function of y, and &,. .
From (2.14), we get
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R, (j)=27 S, b(s)d(j +5). @.17)
s=0
Hence, (2.12) may be rewritten as
SbEd+)=23 S BIOBEIBGs +i-K) (=0, 1,..3,

s=0 s=0 k=0

or, as ‘
d(v)=22:;i R —k) (@=01,..). @18)

Since, b(v) = 0, v <0, (2.18) may be solved by the Fourier series techmques On
_ multlplymg both the sides of (2.18) by e and summing for all v =0, we get

HQ)= S h(k)exp(-ikA)

k=0

-2 Boy DL = F AMALWADLE @)
and
hi)=@m [ HO) expljayda. @20)

Since the d(u) given by (2.16) and the a(j) given by (2.9) are absolutely
summable, so are the h(j) (see, e.g., Fuller {14, p. 120]). Thus, the h(j)’s satisfy

S iRl <.

j=0

The mean square error of prediction »? is

= E{(y - ) = Ry~ 3 h()Re(i)

j=0

= [ - F ok} o = R,,(O)———g)d% -

@.21)

Equations (2.19) and (2.21) are consistent thh the results-of Whittle {24, pp. .
66-68], but note that a dividing factor of o?is mlssmg in equation (3.7.2) of
Whittle [24, p. 42]; see also Bhansali [3].

It is instructive to compare the.‘one-sided’ predictor (2.10) with the cor-
responding ‘two-sided’ predictor of y, obtained by assuming that the complete
past, present and the complete future of x; is known. Let
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= 2 80U 2.22)
’-—G
be the ‘two-sided’ linear least-squares predictor of y, Then, as in (2.12), the
g(j) are the solutions of the equations

Ra)= 3 g()Rulu-j) (u=0,%1,..). 2.23)

j=—o

Since these equations are two-sided and are valid for all integral values of u,
they may be solved by the Fourier series techniques. On multiplying both the
sides of (2.23) by (27)™' e and summing over u, we have

F)= 3 g(j)exp(-ijA) = fA)fu1) 2.24)
and a
8() =35 | T explim). N @25)

Let 72= E{(y. - 7,)} be the corresponding mean square error of prediction.
We have

o= {fyy(A) = ar = [* - cronpmrar, @)

where Cr(A) =|f,: (M) f(A)fuc(A)}'? is called the coberence betveen y, and
x,. Note that 0<C,(A)=<1, all A. Expression (2.26) therefore shows that if
C,x(A) is close to 1 at all frequencies, then 72 is close to 0, and one would
expect to obtain a close linear fit between y, and x,. In this sense, C,x(1) may be
interpreted as a correlation coefficisnt ‘in the frequency domain’ (see, e.g.,
Priestley [22] and Granger and Hatanaka (15]).

On using (2.14)2.16), (2.21) may be rewritten as (see Whittle {24, p. 69])

472 3 N
=72+?.2 d(j). : 2.27)
j=-= : ‘
The second term to the right of this expression gives the increase in mean
square error due to the restriction that only the ‘past’ of x, may be used for
predicting y. In general, therefore, 2= 72
There is, however, one important situation in which 2 = 72. This occurs when x,
is the input to, and y, the output of, a physically realizable linear time-invariant
filter with uncorrFlated noise, i.e. when,

=S ()0 + 22, | N 2.28)

i=0

{z} is a stationary process uncorrelated with x, and = |I(j)| <.



