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SUBSURFACE FLUID DYNAMICS

At the present time, mathematical modelling is frequently applied to the
mechanics of continuous media and in particular to subsurface fluid
dynamics. The latter deals with such important theoretical and practical
issues as water flow through dams, soil salinization, the spread of pollution
by groundwater flows, oil production, groundwater flow into artesian
wells and many others. The similarity of the physical processes involved
in these phenomena means that their models also have many similarities,
although the model equations all have their own special characteristics. It
is in fact these special characteristics that make it very difficult to validate
the models and solve the equations.

Filtration is defined as fluid flow through a porous medium. A
medium is regarded as porous if it contains a large number of voids which
are small by comparison with the typical dimensions of the medium.
Porosity is defined quantitatively by the ratio of pore volume to bulk vol-
ume: m = V,,‘,,/ Viewl- Mathematical flow models are based on the law of
conservation, the mechanics of continuous media, their effects, and other
accepted equations. Primary equations include the continuity equation
(taking porosity into account), the heat balance equation and equations of
state. The main assumption of the flow theory is the replacement of
Euler’s or Navier-Stokes equations of motion with Darcy’s Law.

The simplest two-phase flow model is the well-known Buckley-
Leverett (BL) model (Chapter 1, Section 1.1), which assumes the equality
of phase pressures, and therefore does not allow for the effect of capillary
forces on fluid flow. The difficulties which arise in solving its equations
(the potential ambiguity of the solution) are resolved by making the flow
process mathematically ideal by assuming that the final function contains a
point of inflexion. Convective processes are central to the BL model. To
take additional effects into account, the mathematical flow model needs
to be adjusted in various ways.

The introduction of capillary forces produces the Muskat-Leverett (ML)
model (Chapter 1, Sections 1.1—1.4) which uses a Laplace equation to allow

for these forces. Unidimensional transformation of the model produces a

vii



viii Preface

non-linear degenerate second-order differential equation. The solution of
this equation has no point of inflexion, and the high-gradient region 1s con-
fined to a limited area, which is perfectly justified in physical terms. Another
advantage of this equation is that although it is parabolic, the model retains
an mmportant and physically natural property, in that it allows perturbations
to propagate within a defined range of velocities (provided that its functional
parameters have been correctly selected) (Chapter 2, Section 2.1).

The flow model is turther refined (and therefore further complicated)
if we allow for the interaction of velocity and temperature in oil-bearing
formations, which means that an energy equation needs to be added to
the model. Models of non-isothermal two-phase flow were studied by
O.B. Bocharov, V.N. Monakhov, R. Yuing (MLT-model) [2; 15; 16; 44|,
E.B. Chekalyuk [140] and others. O.B. Bocharov and V.N. Monakhov
[16] proposed and investigated an even more generalized MLT-model,
which included variable (temperature-dependent) residual saturation.

Other generalized flow models include non-linear, multiphase and
multicomponent flow models and others.

In our book, we concentrate on the effect of temperature on fluid
flow processes as applied to modelling water-oil displacement and the
production of fluid. The inclusion of non-isothermal flow makes it possi-
ble to approximate the real conditions, making the physical and therefore
the mathematical model less abstract, and provides some corrections to
the accepted hydrodynamic methods of calculating oil production.

Studies have shown that oil recovery factors can be significantly increased
only by changing the physical and physico-chemical properties of the dis-
placed phase, withthermal recovery being increasingly favoured. The impor-
tance of thermal recovery methods is largely due to the fact that they use
easily available media—water and air. Another major advantage over most
other methods (e.g. physico-chemical) is the potential for increasing recov-
ery in a variety of physico-geological oil field conditions. Thermal recovery
methods are based on the fact that the viscosity of oil decreases considerably
when it is heated, so that their primary application is in high-viscosity oil
fields. At the same time, thermal recovery involves virtually all known oil
displacement mechanisms, together with a variety of phase transitions, so
that it ofters promise even in the case of low-viscosity oil fields which have
long been operated under water injection. It should be noted that the injec-
tion of water at a temperature lower than formation temperature (e.g. sea
water or injection during winter) reduces oil recovery. In particular, it may
lead to wax precipitation directly in the porous medium.
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It 1s well known that in water wet rocks capillary forces can play a
very important role in the process of oil displacement. If a
low-permeability section is surrounded by high—permeability rock, the
water will flow around the oil contained in the section. If water wet for-
mations are flooded, the oil can be frequently recovered only by the use
of capillary forces. The existence of this mechanism has been confirmed
both experimentally and by analysing fields consisting of inhomogeneous
water wet rocks. Capillary saturation may also have a decisive influence
on the mechanism of oil recovery in stratified beds. Therefore, we need
to know how the non-isothermal process of oil displacement by capillary
forces will affect the recovery of oil from such heterogeneous formations.

All these phenomena require thorough study, and the Muskat-Leverett
thermal flow model provides an effective tool.

Many problems formulated using these models can be studied in a
given sequence, forming a specific process cycle, such as for instance
steam treatment (Chapter 2, Section 2.1), which may be described in a
simplified form as consisting of the following steps (the corresponding
mathematical statements are shown in brackets):

1. Steam (superheated water) injection at a specified temperature and
flow rate (non-isothermal two-phase flow with convective forces
predominating);

2. Soaking for a specified time without water injection (thermocapillary
saturation)

3. Steam or water injection (possibly, at a different temperature and flow
rate) (non-isothermal two-phase flow with convective forces
predominating).

Therefore, if we know how to model these steps we can use them to
study more complicated processes and make multivariate optimizing
calculations.

For all the above models, we need to find specific solutions, including
self~similar (analytical) solutions, and this problem is dealt with in
Sections 2.1—2.5 of Chapter 2.

NUMERICAL MODELLING OF OIL PRODUCTION PROCESSES

The most common oil-field development systems are based on symmetri-
cal well patterns. This means that rather than studying a whole field, we
can study a single development unit, which usually consists of two wells.
For example, for a five-spot water flood, the basic element is a rectangle
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with no flow boundaries, containing an injection and a production well
1N opposite corners.

Since calculations of the development of basic elements of symmetri-
cal well patterns can be reduced to calculations of linear flow (for an
in-line pattern) or a plane-radial flow (for an areal pattern), this simplifies
flow model equations, making them one—dimensional.

The formulation of the initial and boundary conditions for the basic
elements 1s also simplified: the production rate, pressure or saturation are
specified for each well. Consolidated figures are then calculated for the pro-
duction unit as a whole, followed by the calculation of the 2D process of
two-phase flow in the basic element—this program can be attached to
more detailed multi-parameter 1D programs, providing them with coeth-
cients allowing for the fact that the processes are not unidimensional.
However, the 2D basic element calculation is important not only because it
supplements the 11D programs but also as a stand-alone petroleum engineer’s
tool, in which the multiple parameters of the IID models can be incorpo-
rated, provided sufficient computing power is available. In addition, as field
development proceeds, well patterns and well operation become asymmet-
rical, and this can only be allowed for by 2D calculations, performed by a
program which calculates the process of oil production in a 2D basic ele-
ment without assuming that the boundary conditions are symmetrical.

The calculation program produces oil saturation and pressure fields
within the basic element and calculates the oil recovery factor and water
cut as a function of the injected pore volumes of water. The information
may be presented in graphical form and then printed out as data files for

“use in further analysis of the oil production process and/or printed out as
numerical files.

The contents of the book. If we include submodels and combined
models, Chapter 1 contains the description of over 30 different mathe-
matical models of oil formations, provides analyses of a number of some
generally accepted flow models and ofters new models of some physical
effects not covered elsewhere. In designing these models, we have
attempted to achieve a good numerical implementation without increas-
ing the number of their key parameters. As a rule, the proposed model
design changes are accompanied by small “slippage” terms introduced
into the equation by analogy with the computing “slippage” in finite-
difference equations. It should be noted that other authors have also
introduced some of the filtration model changes proposed in Chapter 1,
but did not analyse the resultant models sufficiently.
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S.N. Antontsev and V.N. Monakhov [4]| proposed a general oil forma-
tion flow model containing a range of functional parameters. By making
a careful selection, some of the models proposed in Chapter 1 can be
derived from them.

Mathematical models can be subdivided into three main classes:

1. Single-phase Darcy models and contact models (Section 1.1);
2. Two-phase models (e.g. the Muskat-Leverett model — Sections 1.1—1.4);
3. Combined models (e.g. of two inhomogeneous liquids — Section 1.7).

In addition to the conventional Darcy and Muskat-Leverett models
and the Muskat-Leverett thermal model (in the form proposed by O.B.
Bocharov and V.N. Monakhov [15; 16]), Chapter 1 describes the Navier-
Stokes and Zhukovsky models (Section 1.1), used by the authors to opti-
mize oil production control and production forecasts.

The book also contains some unconventional models, such as the
models describing the process of “foaming” in oil formations (Section
1.6), the combination of reservoir flow with liquid flow in wells (Section
1.5) and others.

Of the new and modified models (e.g. the reduced-pressure ML and
MLT models) Chapter 1 discusses only the models developed by V.N.
Monakhov and studied by him and his colleagues and students, S.N.
Antontsev, O.B. Bocharov, A.A. Papin, R. Yuing, E.M. Turganbayev, V.
N. Starovoitov, N.V. Khusnutdinov, A.E. Osokin, and others [4; 15; 16;
18; 20; 32; 44; 61; 69; 75; 91; 94; 101; 124; 134].

Chapter 2 presents a theoretical and numerical analysis of one-
dimensional and self-similar (analytical) thermal two-phase flow patterns,
while its Section 2.1 provides additional information based on the ordinary
differential equation theory, which is also of independent interest.

The core of the chapter is formed by Sections 2.2 and 2.3, which pres-
ent the results of V.N. Monakhov, O.B. Bocharov, A.E. Osokin, and T.V.
Kantayeva’s work [20; 69; 92]. These include the theorem of existence of
self-similar (analytical) solutions of the MLT model for constant and vari-
able residual saturation, the identification ot a restricted range of velocities
of propagation of perturbations, and the computer implementations of the
numerical algorithms proposed by the authors and their substantiation.

Section 2.4 contains a theoretical analysis of the analytical solutions
(B.T. Zhumagulov, V.N. Monakhov |58].

The existence and uniqueness of self-similar (analytical) solutions of
the model of two-phase flow of non-linear-viscous liquids is demon-
strated in 2.5 (E.G. Galkina, A.A. Papin [32]). Section 2.6 establishes the
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convergence of Rothe-type methods in a one-dimensional MLT model
(A. E. Osokin [100]).

Section 2.7 is devoted to the substantiation of a new method of inte-
grating ML and BL model solutions and to their numerical implementa-
tion (I.G. Telegin, [129]; B.T. Zhumagulov, Sh.S. Smagulov, V.N.
Monakhov, N.V. Zubov [61]).

The existence and uniqueness of “im Kleinen” (small-scale) solutions of
the first boundary-value problem, based on the initial data for the two
interpenetrating viscous liquids flow model is demonstrated in Section 2.8
(A. A. Papin [101]).

Chapter 3 deals with numerical modelling of two-dimensional subsur-
face hydrodynamics processes with reference to Muskat-Leverett isothermal
and temperature models as well as Navier-Stokes and Zhukovsky models.

In this chapter, Section 3.1 demonstrates the convergence and stability
of effective finite—difference schemes (38| for Navier-Stokes velocity vs.
pressure finite difference equations, while Section 3.2 uses velocity vs.
flux function and the method of virtual regions to provide numerical
calculations of reservoir flows in multiply connected regions [45] and
geometrically complex regions (Section 3.3) [45]. In Section 3.4, similar
numerical methods are applied to the Zhukovsky model. [49].

Section 3.5 provides a solution to a key problem of subsurface hydro-
dynamics—that of determining formation pressure from measured well
pressure values [49]. We have performed a numerical calculation of for-
mation heating, which forms one of the stages of steam treatment, based
on the classical thermal convection model (Section 3.6) [63]. Section 3.9
[49] provides a numerical solution of water-oil displacement from inho-
mogeneous oil formations, based on the ML model, while Section 3.7
and Section 3.8 present the mathematical substantiation of the finite-
difference equations used in Section 3.8 for more general models [18,
44]. And finally, Section 3.10 offers a hydrodynamic analysis of the results
of numerical calculations of subsurface hydrodynamics problems based on
different formation models [57].

Sections 3.1=3.6 and 3.9 present the results obtained by B.T.
Zhumagulov and his colleagues, Sh.S. Smagulov, N.T. Danayev, B.G.
Kuznetsov, G.T. Balakayeva, N.T. Temirbekov, K.Zh. Baigelov, K.M.
Baimirov, K.B. Esikeyev [38; 47-52; 56; 59].

Results obtained jointly by V.N. Monakhov with R. Ewing [44],
O. B. Bocharov [18] and B.T. Zhumagulov [57] appear in Sections 3.7,
3.8 and 3.10.
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Fluid Flow Models

1.1 INTRODUCTION

In this chapter we analyze a number of well-known mathematical models
of homogeneous and non-homogeneous fluid flow in porous media, and
propose some new models. As the existing models [89; 105; 143] are
based on specific conceptions of these processes, the inclusion of each
new effect requires a revision of their underlying assumptions, as well as a
revision of the model.

The fact that there are many forms of Darcy’s Law means that we
need to ask ourselves how to select the form which will best describe
each specific situation. While the work on this question has progressed in
recent decades, it has involved virtually no review of the fundamentals of
conventional models. Frequently, experimental data processed to fit the
conventional models have been unstable (not easily reproducible), while
published experimental results did not, as a rule, provide sufficient infor-
mation to fit them to other models. Some eftects are simply impossible to
describe in terms of the existing models.

Basic mathematical analysis of the various forms of flow models may
prove extremely useful for the modelling of phenomena. At the same
time, new physical factors need to be taken into account, that is, the
minor effects which stabilize the numerical calculations (i.e. the physical
“shippage terms” in the equations). For instance, transition to linear mod-
els often leads to a loss of divergence in equations, and when it comes to
numerical calculations, does not simplify the initial nonlinear model.
Equally, striving to achieve a mathematically satisfactory model can lead
to a lack of conformity with the physics of the phenomenon, as is the
case with the divergent form of Darcy’s Law for inhomogeneous media,
proposed by Sheidegger [143].

At present, the widespread use of computers has led to the establishment
of a well-defined “process flow diagram” for solving specific problems in the
mechanics of continuous media, including multiphase fluid flow. The work
flow progresses from the problem under consideration to a mathematical

© 2014 Elsevier Inc.
Fluid Dynamics of Oil Production All rights reserved. 1
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model, from there to a numerical algorithm, the implementation software

and finally to the analysis of the results. While the individual components of

the process are not isolated but interconnected, linking both forwards and
backwards, the most important factor for success is likely to be the choice
of an appropriate mathematical model.

There are several principal requirements applicable to phenomenological
flow models:

1. Experiment reproducibility. The ability to define all parameters exper-
imentally, without needing to involve additional “theories”, and good
reproducibility of the experiments.

2. A clear distinction between the underlying hypotheses, and a clear
definition of the limits of their applicability, both in qualitative terms
(what kinds of physical effects they can describe) and quantitatively.

3. Ability to incorporate simpler models into higher-level models, so
that new physical factors can be taken into account.

4. Mathematical feasibility and correctness.

Needless to say, these are not rigid requirements and could even be
seen as programmes of study of the models. Moreover, the features of
phenomenological models can be determined in laboratory conditions,
using higher-level models containing independently determined para-
meters. For instance, the Navier-Stokes model could be used to deter-
mine phase permeabilities in two-phase flow models and to check various
properties (e.g. saturation). Below we comment on several examples of
multiphase fluid flow. There is no point in calculating total oil recovery
using models which specify the total flow rate for injection wells, and the
flow rate of only the displaced phase for production wells. If the phases
are incompressible, then the answer lies in correctly stating the well
conditions.

With these examples, we hope to have provided some insight into the
difficulties of choosing an appropriate model with which to describe the
physical process of fluid flow in porous media as it occurs in reality.

1.2 SINGLE-PHASE AND TWO-PHASE FLUID FLOW MODELS

1.2.1 Darcy’s Model and Contact Models

1.2.1.1 The Properties of Porous Media

The main property of a porous material, its porosity (effective or
dynamic), is described by the ratio m = 1,/ Vi, where 1, is the intercon-
nected pore volume and 1, is the bulk volume.



