B B R & %= 3

PEARSON

Addison
Wesley

Eftective Java

Programming Language Guide

(5 EBAR)

2002 £ &
Jolt k%2

software
deveLopment
2002
product
excellence
award

[2] Joshua Bloch

e ——————
sl . 57 #RELAMER Java HIZZWHN =

Effective Java Java Z & Gosling x #E# =
WEF &N RSRFEDEORRTE -

R
R
@ Sun =

mﬁ‘@@ﬁi’.ﬁh&

www.infopower.com.cn

R B R =& % W

Eftective Java

Programming Language Guide

$- 21

[%] Joshua Bloch %=

T@D YA G Bk L

Effective Java Programming Language Guide (ISBN 0-201-31005-8)

Joshua Bloch

Copyright © 2002 Addison-Wesley, Inc.

Original English Language Edition Published by Addison-Wesley Publishing Company, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWERPRESS, Copyright © 2003.

A ENNR E Pearson Education #ZACH [i g i ARAEAE R EIBEA (e T 145 54T BUX R
BEHXERAN) HE MR, KT,
e I B VFa], AR LME T 7 SR s A1 AR T3 5 -

AP 4 Pearson Education B A FREE, A% & AHHE.
LR AR EE ARSI S: BT 01-2003-7037
For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong

Kong SAR and Macao SAR).
PR T e NROCRIE BTN OR QUSRS b (B & 3R AT BRI b [S i XD 8 AT .

7R B (CIP) 4

Effective Java / (38) M mid. EIA. —Ibat: JE) i, 2003
CJRRRAER R A1)

ISBN 7-5083-1813-7

[.E.. Il.fi.. TILJAVA i&E&—Fi&il IV.TP312

op [AR AR K T CIP U7 (2003) 3 092027 5

% IR R A
SE 4. Effective Java (FZEIRD
#:. (3) Joshua Bloch
T EgndE: KB
HYRRCRAT s o B W g A B A
bt ALET CHEReS MBEgRIG: 100044
Hif: (010) 88515918 2. (010) 88518169
Ep Wil V@D S5 A A F]
KAT # OBEBIN RS AR AT BT

T A 787X 1092 1/16 =] 7K. 16.75
] . 7-5083-1813-7
fife e 20045E1 HAL TS 1R 2004451 H 55 1 R ERY

£ ffr: 30.00 JC
WALET A BHEN AT

Effective Java™

Programming Language Guide

Joshua Bloch

To my family: Cindy, Tim, and Matt

Foreword

IF a colleague were to say to you, “Spouse of me this night today manufactures the
unusual meal in a home. You will join?” three things would likely cross your mind:
third, that you had been invited to dinner; second, that English was not your col-
league’s first language; and first, a good deal of puzzlement.

[f you have ever studied a second language yourself and then tried to use it
outside the classroom, you know that there are three things you must master: how
the language is structured (grammar), how to name things you want to talk about
(vocabulary), and the customary and effective ways to say everyday things
(usage). Too often only the first two are covered in the classroom, and you find
native speakers constantly suppressing their laughter as you try to make yourself
understood.

[t is much the same with a programming language. You need to understand the
core language: is it algorithmic, functional, object-oriented? You need to know the
vocabulary: what data structures, operations, and facilities are provided by the
standard libraries? And you need to be familiar with the customary and effective
ways to structure your code. Books about programming languages often cover
only the first two, or discuss usage only spottily. Maybe that’s because the first
two are in some ways easier to write about. Grammar and vocabulary are proper-
ties of the language alone, but usage is characteristic of a community that uses it.

The Java programming language, for example, is object-oriented with single
inheritance and supports an imperative (statement-oriented) coding style within
each method. The libraries address graphic display support, networking, distrib-
uted computing, and security. But how is the language best put to use in practice?

There is another point. Programs, unlike spoken sentences and unlike most
books and magazines, are likely to be changed over time. It’s typically not enough
to produce code that operates effectively and is readily understood by other per-
sons; one must also organize the code so that it is easy to modify. There may be
ten ways to write code for some task 7. Of those ten ways, seven will be awkward,
inefficient, or puzzling. Of the other three, which is most likely to be similar to the
code needed for the task 7" in next year’s software release?

Xi

Xil

FOREWORD

There are numerous books from which you can learn the grammar of the Java
Programming Language, including The Java Programming Language by Arnold,
Gosling, and Holmes [Amold00] or The Java Language Specification by Gosling,
Joy, yours truly, and Bracha [JLS]. Likewise, there are dozens of books on the
libraries and APIs associated with the Java programming language.

This book addresses your third need: customary and effective usage. Joshua
Bloch has spent years extending, implementing, and using the Java programming
language at Sun Microsystems; he has also read a lot of other people’s code,
including mine. Here he offers good advice, systematically organized, on how to
structure your code so that it works well, so that other people can understand it, so
that future modifications and improvements are less likely to cause headaches—
perhaps, even, so that your programs will be pleasant, elegant, and graceful.

Guy L. Steele Ir.
Burlington, Massachusetts
April 2001

Preface

—

IN 1996 1 pulled up stakes and headed west to work for JavaSoft, as it was then
known, because it was clear that that was where the action was. In the intervening
five years I've served as Java platform libraries architect. I've designed, imple-
mented, and maintained many of the libraries and served as a consultant for many
others. Presiding over these libraries as the Java platform matured was a once-in-a-
lifetime opportunity. It is no exaggeration to say that I had the privilege to work with
some of the great software engineers of our generation. In the process, I learned a lot
about the Java programming language—what works, what doesn’t, and how to use
the language and its libraries to best effect.

This book is my attempt to share my experience with you so that you can imi-
tate my successes while avoiding my failures. I borrowed the format from Scott
Meyers’s Effective C++ [Meyers98], which consists of fifty items, each convey-
ing one specific rule for improving your programs and designs. I found the format
to be singularly effective, and I hope you do too.

In many cases, I took the liberty of illustrating the items with real-world
examples from the Java platform libraries. When describing something that could
have been done better, I tried to pick on code that I wrote myself, but occasionally
[pick on something written by a colleague. I sincerely apologize if, despite my
best efforts, I've offended anyone. Negative examples are cited not to cast blame
but in the spirit of cooperation, so that all of us can benefit from the experience of
those who've gone before.

While this book is not targeted solely at developers of reusable components, it
is inevitably colored by my experience writing such components over the past two
decades. I naturally think in terms of exported APIs (Application Programming
Interfaces), and I encourage you to do likewise. Even if you aren’t developing
reusable components, thinking in these terms tends to improve the quality of the
software you write. Furthermore, it’s not uncommon to write a reusable compo-
nent without knowing it: You write something useful, share it with your buddy
across the hall, and before long you have half a dozen users. At this point, you no

Xiii

Xiv

PREFACE

longer have the flexibility to change the API at will and are thankful for all the
effort that you put into designing the API when you first wrote the software.

My focus on API design may seem a bit unnatural to devotees of the new
lightweight software development methodologies, such as Extreme Programming
[Beck99]. These methodologies emphasize writing the simplest program that
could possibly work. If you’re using one of these methodologies, you'll find that a
focus on API design serves you well in the refactoring process. The fundamental
goals of refactoring are the improvement of system structure and the avoidance of
code duplication. These goals are impossible to achieve in the absence of well-
designed APIs for the components of the system.

No language is perfect, but some are excellent. I have found the Java
programming language and its libraries to be immensely conducive to quality and
productivity, and a joy to work with. I hope this book captures my enthusiasm and
helps make your use of the language more effective and enjoyable.

Joshua Bloch
Cupertino, California
April 2001

~ Acknowledgments

I thank Patrick Chan for suggesting that I write this book and for pitching the idea
to Lisa Friendly, the series managing editor; Tim Lindholm, the series technical edi-
tor; and Mike Hendrickson, executive editor of Addison-Wesley Professional. I
thank Lisa, Tim, and Mike for encouraging me to pursue the project and for their
superhuman patience and unyielding faith that I would someday write this book.

I thank James Gosling and his original team for giving me something great to
write about, and I thank the many Java platform engineers who followed in
James’s footsteps. In particular, I thank my colleagues in Sun’s Java Platform
Tools and Libraries Group for their insights, their encouragement, and their sup-
port. The team consists of Andrew Bennett, Joe Darcy, Neal Gafter, Iris Garcia,
Konstantin Kladko, Ian Little, Mike McCloskey, and Mark Reinhold. Former
members include Zhenghua Li, Bill Maddox, and Naveen Sanjeeva.

I thank my manager, Andrew Bennett, and my director, Larry Abrahams, for
lending their full and enthusiastic support to this project. I thank Rich Green, the
VP of Engineering at Java Software, for providing an environment where engi-
neers are free to think creatively and to publish their work.

[have been blessed with the best team of reviewers imaginable, and I give my
sincerest thanks to each of them: Andrew Bennett, Cindy Bloch, Dan Bloch, Beth
Bottos, Joe Bowbeer, Gilad Bracha, Mary Campione, Joe Darcy, David Eckhardt,
Joe Fialli, Lisa Friendly, James Gosling, Peter Haggar, David Holmes, Brian
Kernighan, Konstantin Kladko, Doug Lea, Zhenghua Li, Tim Lindholm, Mike
McCloskey, Tim Peierls, Mark Reinhold, Ken Russell, Bill Shannon, Peter Stout,
Phil Wadler, and two anonymous reviewers. They made numerous suggestions
that led to "great improvements in this book and saved me from many
embarrassments. Any remaining embarrassments are my responsibility.

Numerous colleagues, inside and outside Sun, participated in technical
discussions that improved the quality of this book. Among others, Ben Gomes,
Steffen Grarup, Peter Kessler, Richard Roda, John Rose, and David Stoutamire
contributed useful insights. A special thanks is due Doug Lea, who served as a

XV

XVi

ACKNOWLEDGMENTS

sounding board for many of the ideas in this book. Doug has been unfailingly
generous with his time and his knowledge.

I thank Julie Dinicola, Jacqui Doucette, Mike Hendrickson, Heather Olszyk,
Tracy Russ, and the whole team at Addison-Wesley for their support and profes-
sionalism. Even under an impossibly tight schedule, they were always friendly
and accommodating.

I thank Guy Steele for writing the foreword. I am honored that he chose to
participate in this project.

Finally, I thank my wife, Cindy Bloch, for encouraging and occasionally
threatening me to write this book, for reading each item in its raw form, for help-

ing me with Framemaker, for writing the index, and for putting up with me while I
wrote.

Contents

I

Foreword............

.........-.-.......-........Xi

Preface . ooosassnsconenssnenssenssns o R <111
Acknowledgments.ccviiviiieennnennneese XV

1 Introduction.............

......... P |

2 Creating and Destroying Objects.5

Item 1: Consider providing static factory methods instead of

CONBHACIOES i s s nocssnciisamasssawnsgsiomsgrs Rassys 5
Item 2: Enforce the singleton property with a private constructor 10
Item 3: Enforce noninstantiability with a private constructor 12
Item 4: Avoid creating duplicate objects. 13
Item 5: Eliminate obsolete object references. 17
Item 6: Avoid fiNaliZers. . . «caivevnmessvnssomawessseneres 20

3 Methods Common to All Objects..................25

Item 7: Obey the general contract when overriding equals 25
Item 8: Always override hashCode when you override equals .. 36
Item 9: Always override toString........................ 42
Item 10: Override clone judiciously. 45

Item 11: Consider implementing Comparable

4 Classes and Interfaces.cceeeeeeeveneenceesd9

Item 12: Minimize the accessibility of classes and members 59
Item 13: Favor immutability 63
Item 14: Favor composition over inheritance 71
Item 15: Design and document for inheritance or else prohibit it. . 78
Item 16: Prefer interfaces to abstractclasses. 84
Item 17: Use interfaces only to define types 89
[tem 18: Favor static member classes over nonstatic. 91

vii

viil

CONTENTS

5 Substitutes for C Constructsccovveene....97

Item 19: Replace structures with classes 97
Item 20: Replace unions with class hierarchies 100
Item 21: Replace enum constructs with classes. 104

Item 22: Replace function pointers with classes and interfaces . .. 115

O Methods . .uovsovvocnswsinsssomnsensesssassss 119
Item 23: Check parameters for validity 119
Item 24: Make defensive copies whenneeded 122
Item 25: Design method signatures carefully 126
Item 26: Use overloading judiciously. 128
Item 27: Return zero-length arrays, notnulls. 134
Item 28: Write doc comments for all exposed API elements. 136

7 General Programming00000e.....141

Item 29: Minimize the scope of local variables 141
Item 30: Know and use the libraries. 145
Item 31: Avoid float and double if exact answers are required . 149
Item 32: Avoid strings where other types are more appropriate. . . 152

Item 33: Beware the performance of string concatenation.. 155
Item 34: Refer to objects by their interfaces. 156
Item 35: Prefer interfaces toreflection. 158
Item 36: Use native methods judiciously 161
Item 37: Optimize judiciouslyo 162
Item 38: Adhere to generally accepted naming conventions 165

8 Exceptionscooiiiiiviecnneennrsaneana..169

Item 39: Use exceptions only for exceptional conditions. 169
Item 40: Use checked exceptions for recoverable conditions and
run-time exceptions for programming errors 172
Item 41: Avoid unnecessary use of checked exceptions. 174
Item 42: Favor the use of standard exceptions 176
Item 43: Throw exceptions appropriate to the abstraction 178
Item 44: Document all exceptions thrown by each method 181
Item 45: Include failure-capture information in detail messages . . 183
Item 46: Strive for failure atomicity 185

Item 47: Don’t ignore exceptionsovtirerenenn .. 187

CONTENTS

9 Threads............. T T L L L L LT T T 189
Item 48: Synchronize access to shared mutable data. 189
Item 49: Avoid excessive synchronization 196
Item 50: Never invoke wait outside aloop. 201
Item 51: Don’t depend on the thread scheduler. 204
Item 52: Document thread safety. 208
Item 53: Avoid thread groups 211

10 Serialization et AGEETE p e 213
Item 54: Implement Serializable judiciously 213
Item 55: Consider using a custom serialized form. 218
Item 56: Write readObject methods defensively............. 224
Item 57: Provide a readResolve method when necessary 230

References....... cetevateesessastennnossnnsannos 233

Index of Patterns and Idioms 239

ix

CHAPTER 1

THIS book is designed to help you make the most effective use of the Java™
programming language and its fundamental libraries, java. lang, java.util, and,
to a lesser extent, java.io. The book discusses other libraries from time to time, but
it does not cover graphical user interface programming or enterprise APIs.

This book consists of fifty-seven items, each of which conveys one rule. The
rules capture practices generally held to be beneficial by the best and most experi-
enced programmers. The items are loosely grouped into nine chapters, each con-
cerning one broad aspect of software design. The book is not intended to be read
from cover to cover: Each item stands on its own, more or less. The items are
heavily cross-referenced so you can easily plot your own course through the book.

Most items are illustrated with program examples. A key feature of this book
is that it contains code examples illustrating many design patterns and idioms.
Some are old, like Singleton (Item 2), and others are new, like Finalizer Guardian
(Item 6) and Defensive readResolve (Item 57). A separate index is provided for
easy access to these patterns and idioms (page 239). Where appropriate, they are
cross-referenced to the standard reference work in this area [Gamma95].

Many items contain one or more program examples illustrating some practice
to be avoided. Such examples, sometimes known as antipatterns, are clearly
labeled with a comment such as “// Never do this!” In each case, the item
explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable
with the Java programming language. If you are not, consider one of the many fine
introductory texts [Arnold00, Campione00]. While the book is designed to be
accessible to anyone with a working knowledge of the language, it should provide
food for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-
ity and simplicity are of paramount importance. The user of a module should
never be surprised by its behavior. Modules should be as small as possible but no

CHAPTER 1 INTRODUCTION

smaller. (As used in this book, the term module refers to any reusable software
component, from an individual method to a complex system consisting of multiple
packages.) Code should be reused rather than copied. The dependencies between
modules should be kept to a minimum. Errors should be detected as soon as possi-
ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do
characterize best programming practices in the great majority of cases. You
should not slavishly follow these rules, but you should violate them only occa-
sionally and with good reason. Learning the art of programming, like most other
disciplines, consists of first learning the rules and then learning when to violate
them.

For the most part, this book is not about performance. It is about writing pro-
grams that are clear, correct, usable, robust, flexible, and maintainable. If you can
do that, it’s usually a relatively simple matter to get the performance you need
(Item 37). Some items do discuss performance concerns, and a few of these items
provide performance numbers. These numbers, which are introduced with the
phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 400 MHz Pentium® 11
with 128 megabytes of RAM, running Sun’s 1.3 release of the Java 2 Standard
Edition Software Development Kit (SDK) atop Microsoft Windows NT® 4.0. This
SDK includes Sun's Java HotSpot™ Client VM, a state-of-the-art JVM implemen-
tation designed for client use.

When discussing features of the Java programming language and its libraries,
it is sometimes necessary to refer to specific releases. For brevity, this book uses
“engineering version numbers” in preference to official release names. Table 1.1

shows the correspondence between release names and engineering version num-
bers.

Table 1.1: Java Platform Versions

Official Release Name Engineering Version Number
JDK 1.1.x/JRE 1.1.x 1.1
Java 2 Platform, Standard Edition, v 1.2 1.2
Java 2 Platform, Standard Edition, v 1.3 1.3
Java 2 Platform, Standard Edition, v 1.4 1.4

CHAPTER 1 INTRODUCTION

While features introduced in the 1.4 release are discussed in some items, pro-
gram examples, with very few exceptions, refrain from using these features. The
examples have been tested on release 1.3. Most, if not all, of them should run
without modification on release 1.2.

The examples are reasonably complete, but they favor readability over com-
pleteness. They freely use classes from the packages java.util and java.io. In

order to compile the examples, you may have to add one or both of these import
statements:

import java.util.*;
import java.io.¥;

Other boilerplate is similarly omitted. The book’s Web site, http://
java.sun.com/docs/books/effective, contains an expanded version of each
example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The
Java Language Specification, Second Edition [JLS]. A few terms deserve special
mention. The language supports four kinds of types: interfaces, classes, arrays,
and primitives. The first three are known as reference types. Class instances and
arrays are objects; primitive values are not. A class’s members consist of its fields,
methods, member classes, and member interfaces. A method’s signature consists
of its name and the types of its formal parameters; the signature does not include
the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-
tion. Unlike The Java Language Specification, this book uses inheritance as a syn-
onym for subclassing. Instead of using the term inheritance for interfaces, this
book simply states that a class implements an interface or that one interface
extends another. To describe the access level that applies when none is specified,
this book uses the descriptive term package-private instead of the technically cor-
rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-
guage Specification. The term exported API, or simply API, refers to the classes,
interfaces, constructors, members, and serialized forms by which a programmer
accesses a class, interface, or package. (The term AP/, which is short for applica-
tion programming interface, is used in preference to the otherwise preferable term
interface to avoid confusion with the language construct of that name.) A pro-
grammer who writes a program that uses an API is referred to as a user of the APL.
A class whose implementation uses an APl is a client of the APL.

