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Preface

Optimal utilization of organisms and parts thereof ‘in large-scale processes requires process
optimization and this in turn calls for a quantitative and often basic understanding of the
energetics and kinetics of biological transformations. In this respect the current developments
in bioprocess engineering, being the process engineering part of biotechnology, a.-
analogous to those which have taken place in the more mature chemical engineering. In the
chemical industry the iarge and wide-scale applications of chemical processes induced a great
number of studies regarding the development of relatively simple models describing with an
acceptable accuracy the often very complex reality of the various processes. This with the
objective of enabling reactor design and process optimization.

In the last two decades a growing number of publications appeared on the extension of
chemical engineering kinetics and energetics to the description of biotechnological processes
and quite a number of useful calculation techniques has been developed. However, the area
is rich in pitfalls and the treatments and models are error prone. In the present work a
generalized sound theory is developed from basic physical principles and the literature is put
in a proper perspective.

Extensive data on the stoichiometry and energetics of microbial growth and product
formation are gathered, and correlations and generalizations are developed. The theories
underlying the energetics and kinetics are dealt with in great depth. The problems and
prospects of the construction of more complicated models are clearly indicated.

The state of the art of the kinetics of biological processes is analyzed and the most useful
general models are clearly treated. Great attention is particularly devoted to error prone areas.
Of great practical value is the presentation of the general models of biological processes. This
fine text and reference book will surely find its way on to book shelves of all professionals
dealing with biokinetics and bio(process)technology. This work is a must for both scientists
and process engineers in industry, institutes and universities who are faced with this most
exciting technology. In addition it will serve as a valuable text book for advanced university
courses.

Son, the Netherlands, 1982
Prof. Dr. Ir. H.A.C. Thijssen
Visiting Professor in Food Technology, Eindhoven University of Technology
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CHAPTER 1

Introduction

1.1. Mathematical models

An important aspect of the methodology of present day physics exists in the construction of
mathematical models of aspects of the behaviour of real systems. Scientific progress is made
possible by comparing the results obtained from mathematical manipulations with the model
with the results of experiments on the real system. This generally results in a cyclical process.
A schematic representation of the process is given in figure 1.1.

In general one starts with the formulation of a verbal model of the process. Such a verbal
statement could, as an example, read: If the substrate concentration in the medium is increas-
ed the specific growth rate of the organism present also increases, however, the increase in
specific growth rate becomes progressively. less if the substrate concentration level is higher.
This model can then be translated into a mathematical expression, and one of the possible
equations could read*:

Cs
= — 1.
M= Umax K, +C, (1.1)

This equation exhibits indeed all the properties which were indicated in the verbal representa-
tion of the model. It is the well-known Monod equation for the substrate concentration
dependence of the specific rate of growth. It is extensively discussed in chapter 9. This equa-
tion can be used to construct a model of, for example, batch growth of microorganisms and
can e.g. be used to calculate the time dependence of the concentration of biomass in the
culture. If these predictions are compared with measurements of the biomass concentration
in batch growth the validity of the model can be tested. If the concordance between the
model predictions and the measured biomass concentration versus time is satisfactory the
model is accepted and can be used for a variety of purposes to be discussed later on. If discre-
pancies between model predictions and measurements exist the model is rejected and, as an
example, the verbal model is refined.

It should be emphasized that, in bioengineering as well as in other engineering disciplines,
reality is much too complex to be modelled in all its intricacies. The model which would be

* See p. 6 for explanation of symbols.



Setting up of
verbal model

Transiation into
a mathematical
model

Solving the
equations

Determination of
parameter sensitivity /

Testing the model

Is the model valid ?

Fig. 1.1. Flow sheet of the construction of a mathematical model. (From ref. 2.)

obtained would be too complex and become scarcely more easy to handle than reality itself.
Furthermore, a complex model often contains a large number of parameters, which are gene-
rally not known, and must be determined experimentally. Therefore a reduction in the com-
plexity of reality is necessary. This should be guided by universal principles such as a compari-
son of the relaxation times of system and environment (see chapter 8), and by the application

for which the model is designed, as well as the possibility of experimental verification of the -
model.

1.2. Kinetic models in biotechnology

In chemical engineering the application of mathematical models to the design, operation and
optimization of chemical reactors and integral plants is widespread. As early as 1965 Van
Krevelen [1] presented an integral picture of the structure of chemical reaction engineering at
the Third European Symposium on Chemical Reaction Engineering. The structurg he present-
ed can today, in 1981, be applied to biochemical reaction engineering without significant
modifications. Figure 1.2 presents an attempt to do this. The macroscopic description of
systems, the central part of figure 1.2, as well as of the structure of reaction engineering, is
based on the possibility of treating systems in terms of so-called macroscopic variables, e.g.
concentrations of chemical substances, amount of energy, temperature and pressure. The
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so-called continuum theory, which will be more extensively discussed in section 1.3, trans-
lates the behaviour of the objects composing the system, e.g. molecules or microorganisms,
into variables in which the corpuscular nature of the system is no longer considered. The
basic macroscopic theory is the subject of chapter 2. In chapter 11 the relationship between
the continuum approach and the more fundamental corpuscular theory is analyzed.

The basic tool of the macroscopic description is the balance equation. For each so-called
extensive quantity, i.e. a quantity which is additive with respect to parts of the system, a
balance equation can be formulated, and its structure is always given by [2, 3]:

Accumulation = Transport + Conversion (1.2)

As can be seen, two types of mechanisms are distinguished by which the total amount of an
extensive quantity in the system can vary: transport towards the system and conversion in
transformation processes in the system. The balance equations result in the so-called state
equations of the model, which describe the time dependence of the state variables of the
system. As is clear the construction of the balance equations depends on two types of
theories: information on the rates of transport of chemical substances to the locale of the
chemical or biochemical transformation processes taking place in the system; and informa-
tion concerning the so-called micro-kinetics of the transformation processes. Together with
the transport phenomena models, the micro-kinetic models constitute a macro-kinetic model
of the behaviour of, e.g., a bioreactor or an ecosystem. Such a model can be used in a variety
of applications, including reactor design and optimization.

Physics Bi_ochernistry o
Microbiology,
Chemistry
THERMODYNAMICS OF Balance equations
IRREVERSIBLE PROCESSES accumuigtion = conversion + transport - Equilibrium
e R thermodynamics
- Conservation of b 2
matter, energy = Sfto«cmometry of
rmomentum Residence time & bioreactions
- Generdlized phase transfer models Micro-kinetic models (cmser\s/c;tm of
transport element
dynamics l i L
Mathematical
Empirical models of Mechanism of kinetic
transport dynamics behaviour of organism,
OCEO-Kinetics organelles, enzymes
Reactor type Scale up
Bioreactor
and
Stationa
Stability process design b;%wou?
Productivit: st )] P
& selectivity Optimization Automation

Fig. 1.2. The structure of (bioJchemical reaction engineering. (From Roels, J.A. (1982) J. Appl. Chem.
Biotechnol. 32, 59.)



In this book | shall concentrate upon the construction of micro-kinetic models of bio-
reactions, The integration of transport phenomena models and micro-kinetic models into a
macro-kinetic model is beyond the scope of the present work. In addition to the macroscopic
theory and its implications for the functioning of organisms and enzymes, information con-
cerning the mechanisms involved in bioreactions, as it is supplied by the growing body of
knowledge in microbiology and biochemistry, constitute the ingredients of the models.

1.3. The continuum theory

The molecular nature of matter and the discrete properties of chemical substances and
organisms are accepted principles in present day physics and microbiology respectively. It is
therefore clear that the fundamentally correct treatment of reality would exist in the construc-
tion of so-called corpuscular models (chapter 11). In an important body of approaches to
reality, however, the corpuscular nature is ignored. This is especially the case if the object of
the study is not associated with the behaviour of individual particles or microorganisms but
with the overall behaviour of a large collection of such objects. In this instance a macroscopic
treatment is employed and a so-called elementary volume introduced. All matter present in
the system is assumed to consist of a large number of elementary volumes, which completely
fill the system. The elementary volume has the following properties.

1. The elementary volume is large enough as to contain a sufficiently large number of
. objects. In this way the average properties of the objects can be defined in a deterministic
way, i.e. the average quantities are specified in a unique way and are no longer subject to
stochastic variations (see chapter 11).
2. The linear dimensions of the elementary volume are small as compared to the smallest
length scales, which are considered in the system’s description. In this way the average
properties of the objects become continuous functions of the length coordinates.

The average properties of the objects in an elementary volume are indicated by so-called
macroscopic variables of which two types exist, intensive and extensive properties.

Consider a volume 4V of a system and define the amount 4Q of a given property present in
the volume (e.g. the amount of a chemical substance or the internal energy). The average
volume density of Q is now defined as:

4aQ

G(av) “Av (1.3)

By definition no gradients exist within the elementary volume, of which the volume is
assumed to be given by V. Hence a point density of Q can be defined as:

_da

=5V (1.4)

q is the so-called intensive quantity, 4Q is the extensive quantity which is associated with it.
Examples of intensive quantities are temperature, pressure, concentrations of chemical sub-
stances, and the volume densities of internal energy and entropy. For extensive quantities a
balance equation according to eqn. (1.2) can be constructed.



1.4. Conserved and non-conserved quantities

For the general case the balance equation for an extensive macroscopic quantity contains a
transport and a conversion contribution. In a number of systems, however, a number of
quantities occur which have the property that they cannot be produced or consumed in the
transformation processes open to the system. Hence the conversion term disappears in eqn.
(1.2). The balance equation then takes the simple form:

Accumulation = Transport (1.5)

For the systems normally encountered in bioengineering, the amounts of the various chemical
elements are conserved quantities. This of course also applies to the systems encountered in
chemical reaction engineering. The principle of the conservation of chemical elements is the
basis of the stoichiometry considerations of chemical reaction engineering and has become a
widely accepted tool in that discipline. However, the application of stoichiometry to reactions
in which functioning organisms appear is somewhat more involved, although basically the
situation is completely the same as in simple chemical reactions.

At a first view the problems involved in the application of stoichiometry considerations to a
growing organism, which is involved in a product formation process, are quite formidable. In
the organisms a multitude of chemical reactions occurs between a variety of chemical com-
pounds. Hence an approach in which the stoichiometry of each and every reaction taking
place is considered is obviously not feasible. It can be shown, however, that a more simple
approach is possible and that a very powerful tool for the analysis of the metabolism of
organisms results. After the basic theory has been treated in chapter 2, the development of
applications is undertaken in chapters 3 and 4.

1.5. The first and second laws of thermodynamics

Thermodynamics is, in its classical form, a typical example of a macroscopic theory. The
theory of equilibrium thermodynamics is an accepted tool in chemical reaction engineering
and of course the constraints posed by the first and second laws of thermodynamics also
apply to processes in which organisms, or parts of organisms, like enzymes, appear. In its
classical form equilibrium thermodynamics cannot be applied to so-called open systems, i.e.
systems, which exchange mass as well as energy with the environment. Unfortunately, how-
ever, microorganisms are open systems and the same applies to chemical reactors, which are
used in continuous operation. The theory of choice to treat such systems is non-equilibrium
thermodynamics, a theory of which the development has progressed considerably during the
past four decades.

The most important principles, on which non-equilibrium thermodynamics are based, exist
in the formulation of constraints to the conversion terms appearing in the balance equations
for two extensive quantities, energy and entropy. The first law of thermodynamics states that
energy is a conserved quantity, i.e. the conversion term appearing in the balance equation for
energy is zero. The first law generalizes this constraint to apply irrespective of the nature of
the system in which the process takes place. The second law of thermodynamics states that
the entropy production in any possible process must exceed zero. The combined application
of the first and second laws of thermodynamics allows the definition of a fundamental
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measure for the efficiency of the energy transformations inside a system. This is the so-called
thermodynamic efficiency.

In chapter 2 the basic formalism of non-equilibrium thermodynamics is treated, in chapters
3and 4 itis applied to the energy transformations in organisms, in chapter 5 it is applied to the
analysis of the efficiency of oxidative phosphorylation, the process in which metabolic energy
in the form of ATP (adenosine triphosphate) is generated from metabolic reducing power. In
chapter 6 the theory is applied to the analysis of patterns of chemical reactions.

1.6. The kinetic description of transformation processes

Stoichiometric considerations and thermodynamic considerations allow an analysis of pro-
cesses without the introduction of detailed kinetic assumptions only up to a certain level. If
one wants to proceed further, kinetic models of the transformation processes in the system
are needed at a certain stage. The problem, which is encountered in the construction of con-
stitutive or kinetic equations of transformation processes. is that a macroscopic kinetic theory
of the generality of thermodynamics does, ‘at present, not exist. Kinetic descriptions still
have, certainly in the realm of bioengineering, a number of the aspects of an art. A problem
encountered in the kinetic description of processes is that generaily a large number of mecha-
nisms can be distinguished which underlie the transformation processes inside a system. A
reduction of the complexity of reality is therefore necessary in many instances. A strategy to
obtain a simplified model is developed in chapter 8. In chapter 7 constitutive equations for
single enzymes and sequences of enzymic reactions are treated. In chapters 9 and 10
approaches towards the kinetic description of functioning organisms are developed. in
chapter 9 so-called unstructured models are considered. These models are based on a very
rigorous simplification of the complexity of a living organism. It is assumed that the amount of
biomass present in the culture provides sufficient information about the activities of biomass.
Changes in the internal structure of the organisms are considered not relevant. In chapter 10
the extension of the theory to models, in which some aspects of the internal structure are
considered, is performed and structured models are treated. Finally, in chapter 11, the
corpuscular description is briefly treated and its consequences for the correct formulation of
macroscopic kinetic models are discussed.

List of symbols

Ci Substrate concentration mole/m3

K Monod saturation constant mole/m3
AQ, 6Q amount of an exfensive property kg, mole

q volume density of an extensive quantity kg(mole)/m3
AV, 8V volume element : m3

u specific growth rate hrls

Phiiod maximum value of the specific growth rate h-!
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CHAPTER 2

Macroscopic theory
for open systems*

- 2.1. The mathematics of the macroscopic description

In figure 2.1 a system of volume V bounded by the surface S is shown. An extensivg property
E, of the system as a whole is considered, it is given by**

E=fedv (2.1)
v

In eqn. (2.1) the intensive quantity e is the volume density of the property E. £ stands for the
total amount of £ present in the system. In general two mechanisms may be distinguished, by
which the total amount of extensive property £ present in the system may vary. £ may be
exchanged with the environment by transport over the system’s boundary, furthermore £
may be produced or consumed in processes taking place inside the system. This leads to the
verbal formulation of a so-called balance equation for the amount of £ present in the system,
it is given by

Accumulation = Conversion + Transport (2.2)

The verbal statement given by eqn. (2.2) can be translated into the following mathematical
expression:

E=1ITg+ o ‘ (2.3)

In eqn. (2.3) 77 represents the total net rate of production of £ in the processes taking place
in the system, @ represents the total rate of exchange of £ with the environment. By analogy
to the definition given in egn. (2.1), it is now possible to define the volume density of the rate
of production of £ as follows:

M= g/rfdv (2.4)

.In egn. (2.4) r is the rate of production of £ per unit volume. In the same way a surface
density of transport can be defined:

* See refs. 1-3.
** See p. 21 for explanation of symbols.



Fig. 2.1. System for the purpose of a macroscopic analysis.

@e= | njgdS (2.5)
S

in which n is the inward normal on the surface of the system and jg is the surface density of
rate of transport to the system [4].

Combination of eqns. (2.1) and (2.3)—(2.5) results in the following global balance equation
for E:

% \j/ edV= ‘flrEdV+ ; njgdS (2.6)

Equation (2.6) applies to the system as a whole (macrobalance) as well as to parts of the
system (microbalance).

In an important part of the present work only homogeneous systems are considered, i.e. e,
re and jg are assumed independent of the spatial coordinates. Therefore, egn. (2.6) can also
be written as:

(eV) =rgV+ gV : 2.7)
In eqn. (2.7) ¢ stands for the total rate of transport of £ to the system per unit volume of the
system. It is defined as:

1
¢£=V 73 (2.8)

Furthermore, in some instances | shall restrict myself to systems of constant volume, and in
this case an even simpler equation applies:

é=r, e+ Of (2.9)
2.2. Conserved and non-conserved quantities

It is'important to make the distinction between quantities which are conserved in the reaction
pattern in the system, and quantities which are not conserved. For a conserved quantity no
net production occurs in the transformation processes taking place in the system, or mathe-
matically

re=0 ~ (2.10)



Hence, for these quantities, the balance equation given by eqn. (2.7) takes the form:

(€V) =gV (2.11)
Or, if the volume of the system is constant:

é=¢¢ (2.12)

These equations are of great importance to the description of the transformations in systems.

Note 2.1

An important group of examples of conserved quantities with respect to chemical
transformations are the amounts of the chemical elements. The conservation principle for the
amounts of these quantities provides the basis for the stoichiometry of chemical reactions, a
fundamental tool in the description of chemical transformations.

2.3. The balance equation for the chemical state vector of a system [5-7]

A system is considered in which a number of chemical compounds exists. The intensive
quantities associated with the total amounts of the chemical substances present are their con-
centrations. These will be expressed in moles per m>. If 7 chemical compounds are present,
their concentrations may be expressed as a row vector of dimensionality n:

C=[CiaCpCsl (2.13)

Each element C; of the vector C represents the concentration of one compound. In the
system a number of chemical transformation processes take place. It is assumed that m in-
dependent chemical reactions take place. Their rates are given by the m dimensional row
vector r:

r=[ry...r5...rm, (2.14)

The rates r; are expressed in moles/ m3s. Each reaction taking place in the system can be
represented by a stoichiometric equation. The number of moles of compound j produced per
unit rate of reaction in reaction /, is assumed equal to a;;. In this case the total reaction pattern
in the system is characterized by the stoichiometry matrix @, an m x n matrix

a= [aj] m reactions (2.15)
n components
Example 2.1

In order to clarify the nature of the formalism introduced above, the following reaction
pattern can be considered:

Reaction 1: CH4+20, > CO, +2H,0
Reaction 2: CH4+ 40, —» CH;0H
Reaction 3: CH4+30,~ CO+2H,0

As six compounds participate, the chemical state vector reads:

C=[Cch, Co, Cco, Cco Cu,0 Cchsonl



