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FOREWORD

The origins of this series were a number of discussions in the Education Com-
mittee and in the Council of the International Union of Pure and Applied
Biophysics (IUPAB). The subject of the discussions was the writing of a text-
book in biophysics; the driving force behind the talks was Professor Aharon
Katchalsky, first while he was president of the Union, and later as the honor-
ary vice-president.

As discussions progressed, the concept of a unified text was gradually

_replaced by that of a series of short inexpensive volumes, each devoted to a
single topic. It was felt that this format would be more flexible and more
suitable in light of the rapid advances in many areas of biophysics at present.
Instructors can use the volumes in various combinations according to the
needs of their courses; new volumes can be issued as new fields become
important and as current texts become obsolete.

The International Union of Pure and Applied Biophysics was motivated to
participate in the publication of such a series for two reasons. First, the
Union is in a position to give advice on the need for texts in various areas.
Second, and even more important, it can help in the search for authors who
have both the specific scientific background and the breadth of vision needed
to organize the knowledge in their fields in a useful and lasting way.

The texts are designed for students in the last years of the standard univer-
sity curriculum and for Ph.D. and M.D. candidates taking advanced courses.
They should also provide a suitable introduction for someone about to begin
research in a particular field of biophysics. The Union is pleased to collabo-
rate with the Cambridge University Press in making these texts available to

_students and scientists throughout the world.

Franklin Hutchinson, Yale University
Watson Fuller, University of Keele
Lorin J. Mullins, University of Maryland
Editors



PREFACE

My initial reaction upon being invited by the Editorial Committee of the
International Union of Pure and Applied Biophysics to write a monograph on
principles of membrane transport was a mixture of flattery and terror. I was
naturally flattered by the invitation but terrified by the seeming enormity of
the task and the effect that acquiescence would have on my already over-
burdened schedule. When this initial reaction gave way to calm objectivity, I
asked myself: With so many books appearing annually on the subject of
membrane transport, is there a justifiable need for yet another?

My answer to this question, which was confirmed by many of my col-
leagues, was that there still is a need for the type of “primer” I would have
desperately longed for in 1959 when, after completing a Residency in In-
ternal Medicine, I joined the Biophysical Laboratories of the Harvard Medical
School as an initiate in the field of membrane transport; my contacts with
undergraduates, graduate students, postdoctoral fellows, and junior scientists
during the past two decades have reinforced this feeling.

In short, this monograph is intended for the “initiate.” Its goal is to intro-
duce some of the basic principles that govern solute and water transport
across membranes and to emphasize the foundations and reasoning that
underlie these principles in a relatively brief and readable form. It is not in-
tended to supplant the more advanced and comprehensive treatments that
can be found in a number of books, chapters, and review articles, but rather
to provide the readers with an appreciation of basic concepts and approaches
that will ease their way into the more advanced literature. In order to achieve
this goal, I have attempted to develop this monograph from “first principles”
assuming only that the reader has had some previous exposure to elementary
differential and integral calculus, chemistry, and physicsAll final expressions
are derived, inasmuch as possible, step by step, and particular care has been
taken to see to it that a consistent set of conventions is carefully defined and
adhered to throughoui. There are a number of basic points that are repeated
throughout this monograph; this may irritate the more advanced reader but,
at the same time, could be valuable to the beginner. In any event, this intro-
ductory text is designed to teach and I am convinced that repetition is an
essential ingredient of pedagogy.

xi



Xii Preface

If I have succeeded in achieving my intended goal, a large measure of the
success is owed to my teachers, colleagues, and students.

I am particularly indebted to:

Professor Arthur K. Solomon, who opened the door to my scientific career
and who permitted (urged) me to teach the first offering of a course entitled
“Bioenergetics and Membrane Transport” (Biology 119) at Harvard College
in 1967. This was a memorable experience which forced me to come to grips
with theoretical principles from the vantage point of a teacher rather than a
user. Much of the organization and many of the developments of this text are
based on my lecture notes for that course.

The late Professor Peter F. Curran, a long-time combination teacher-
collaborator-friend, who was exceptionally capable of employing theory to
provide a logical, coherent, and concise “picture” of experimental data.

And, the late Professor Aharon Katchalsky, a profound thinker, a gifted
educator, and a constant source of inspiration; one cannot lavish too much
praise upon his personal and intellectual attributes.

The tragic and untimely deaths of Peter Curran and Aharon Katchalsky,
within a brief span of time, came as terrible blows. I am privileged to have
shared their friendship and collegiality, and owe them both a great deal.

In addition, I am grateful to Drs. Alvin Essig, Raymond Frizzell, and
Stephen Thompson for their careful reading of this manuscript and their
corrections, cogent suggestions, and critical comments.

I wish to thank my secretary, Susan Frizzel, who nurtured this effort from
first draft to final product and am eternally indebted to her dog, Fagin, for
not having completely devourcd Chapter 4 during an unguarded moment. (I
reject my son’s suggestion that he found it “too dry”!)

Finally, 1 owe a special brand of gratitude to my wife, Harriet, and my
children, Jeffery and Kenneth, who have always provided me with the
warmth, encouragement, and peace of mind to enable me to “do my thing.”
My debt to them and my parents can never be repaid.

SGsS.
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1  Some basic principles of
- thermodynamics: The relations
between flows and forces

The formal description of transport across membranes rests firmly on the
unassailable citadel of thermodynamics, that branch of science concerned
with the changes that accompany the transition of a system (a defined por-
tion of the universe selected for study) from one set of conditions (state) to
another.! In this chapter we will develop the basic principles that deal with
the transitions of a system from one state (initial) to another (final), which
result from the transfer of matter within the system.?

1.1. Properties of state

Any macroscopic. system at equilibrium can be described com-
pletely by an equation of state, which relates a set of parameters or properties
that are functions only of the current state of the system and are independent
of its past history. It follows that any change in a property of state is uniquely
determined by the initial and final conditions of the system and is indepen-
dent of the path (or mechanism) of transition between these two states.

A property of state can be formally defined as follows. If Z is a function of
other properties of state, for example, Z=f(U, V, W, . . .) and if

dZ=L-dU+M-dV+N-dW+-:-

where L = (0Z/oU)yy,.. ., M= (0Z[3V)y,w,...,N=(3Z[aW)y,y,..., and so
on, then dZ is an exact (or total) differential of f(U, V,W,...)and Z is a
property of state.> The reason, of course, is that if these relations hold, then
L-dU,M-dV, N -dW, and so on, represent the individual contributions of
the changes in U, V, W, . . . to the total change in Z and, since addition is a
commutative operation, the total change in Z does not depend upon the
order or sequence of the changes in U, V, W, . .. . For example, referring to
Figure 1.1, if a system undergoes a change from state A to state C as a result
of changes in properties U and V, the change in Z will be the same if the
change in U preceded the change in ¥ (pathway 1) or if both U and ¥V change
simultaneously (pathway 2), that is,
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Figure 1.1. U, V, W, ... are properties of state. If a system under-
goes a transition from an initial state 4 to a final state C as a result
of changes in U and V, the properties of the final state are indepen-
dent of the path.

AZ:ZC-ZA =f(UC’ VC’ 'VA’- ")-f(UA’ VAawA"")
=[Zp-Z4) + 2c- Zp)]

Finally, the fact that dZ is an exact differential means that there will be no
change in Z if the system is displaced from state A and then restored to state
A regardless of the paths (mechanisms and durations) of displacement and
restoration (e.g., referring to Figure 1.1, 4 to B and back, 4 to C and back,
A to B to C and back, 4 to C to B and back); that is, the closed integral,
$dZ = 0 (Green’s theorem).

The state properties of a homogeneous system can be divided into two
categories, namely, intensive properties and extensive properties. Intensive
properties are those characteristic of the total system, as well as any arbi-
trarily selected part of the system, and they are nonadditive; for example,
pressure (P), temperature (T), concentration (c), and electrical potential (Y);
these properties reflect the “intensity” of the system. The extensive proper-
ties of a homogeneous system are measures of the size or content of the
system and are additive; for example, volume (¥), number of moles (n).
Obviously, the total volume of a system is the sum of the volumes of all sub-
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Table 1.1. Conjugate properties of state

Intensive property Extensive property
Pressure (P) Volume (V)
Electrical potential ({/) Charge (e)
Temperature (T') ) Entropy ($)
Chemical potential (u) Moles (n)

divisions (parts) of the system whereas the temperature of these subdivisions
is the same. Further, it is obvious that the ratio of any two extensive prop-
erties is an intensive property (e.g., n/V =c), and it can be shown that any
intensive property can be expressed as a function of all other intensive prop-
erties of asystem (e.g., the perfect gas law PV= nRT can be written P = cRT).

Every intensive property is paired with a conjugate extensive property and
a difference in an intensive property is @ driving force for the flow or displace-
ment of its conjugate extensive property. The conjugate properties of state
with which we will be concerned are listed in Table 1.1. Clearly, a difference
in pressure (AP) is a driving force for the displacement of volume (¥); a dif-
ference in electrical potential (Ay) is a driving force for the flow of charge
(e); as we will see, a difference in temperature (AT) is a driving force for the
displacement of entropy (S); and for the moment let us define a driving force
for the flow of uncharged matter (n) as a difference in chemical potential
(Ap). An explicit expression for the chemical potential will‘be derived below.
Further, for reasons that will become evident, we refer to a difference in an
intensive property as the conjugate driving force for the flow of its paired
(conjugate) extensive property. Finally, it should be noted that the product
of an intensive property and its conjugate extensive property has units of
energy or work. Thus, PdV is the work that must be performed to displace
an amount of volume (dV") against a pressure (P); Y de is the work that must
be performed to bring an amount of charge (de) from a region of zero elec-
trical potential (ground state) to a region where the electrical potential is ;
and as we will see, y; dn; is the work that must be performed to transfer a
number of moles of an uncharged substance (dr;) from a region where the
chemical potential of i is zero to one where it is p;.

1.2. The first and second laws of thermodynamics

The entire edifice of thermodynamics is founded on two laws or
postulates that simply summarize a vast amount of human experience. The
first law, often referred to as the law of conservation of energy, states that
the total internal energy of a system (£) can only change as a result of the
gain or loss of heat (Q) and/or performance of work (W) on or by the system;
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that is,
dE =dQ - dW (1.1)

where dQ is positive when heat is gained by the system and dW is positive
when work is perférmed by the system on its surroundings. E is an extensive
property of state determined by the total potential and kinetic energy of the
components within the system, and dE is an exact differential’of an equation
of state. However, Q and W are not properties of state inasmuch as the
amount of heat gained and work performed by a system when it changes
from one state to another depends upon the nature (pathway, mechanism)
of the transition.

For a system that is capable of exchanging matter with its surroundings,
equation (1.1) can be written more explicitly as follows:

dE=dQ- PdV+yde+ Y wdn; (1.2)
Vs i

where PdV is positive when the system performs work by expanding (dV)
against an external pressure P;  de is positive when an amount of charge de
is transferred into a system whose electrical potential is y/; and y; dn; is posi-
tive when an amount (moles) of matter dn; is transferred into a system where
the chemical potential of i is y; (see note 9). |

The first law is a “bookkeeper’s delight™; it states that a change in the in-
ternal energy of a system must be the sum of the exchange of heat with its
surroundings and the work performed on or by its surroundings. Since the
heat gained or lost by the system must be equal to the heat lost or gained by
the surroundings, and since the energy lost by a system as a result of the
performance of work on its surroundings must be equal to the energy gained
by the surroundings, the internal energy of the universe is conserved; E is
simply transferred from one system to another but the total remains con-
stant. However, the first law provides no way of distinguishing between
spontaneous or natural processes and processes that can never tzke place
spontaneously; according to this law, all processes are equally possible provid-
ing they obey equation (1.1).

The second law of thermodynamics is the culmination of many efforts to
describe the fact that all natural or spontaneous processes take place only
in the direction toward equilibrium and come to a halt when this time-
independent state is reached! Work must be performed on a system to dis-
place it from equilibrium; such a displacement cannot occur spontaneously
and, for this reason, spontaneous processes are referred to as “irreversible.”
This monumental achievement was accomplished by introducing the con-
cepts of reversible processes, namely, processes that take place infinitely
slowly so that the transition from one state to another may be treated as if
the system passes through an infinite series of equilibrium states. For such an
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idealized process, it can be shown that, although dQ is not an exact differen-
tial, the ratio (dQ/T) is an exact differential. Thus, a new property of state
emerges, the entropy (), which for a reversible process is defined by the
relation

ds=dQ|T (1.3)

Since § is a property of state, a change in S is dependent only on the initial
and final states of the system and is independent of the intervening path.
Thus, for a given set of initial and final conditions, dS is the same if the tran-
sition between these states is the result of a spontaneous (irreversible) process
or an idealized reversible process. However, for a given transition, the heat
lost to the surroundings is greater (or the amount of heat taken up by the
system from its surroundings is less) when the process is irreversible than
when it is reversible.* Thus, for an irreversible process

ds >do|T (1.4)

Stated another way, if the same change in state is carried out reversibly and
irreversibly

as= (dQ/ T)rev > (dQ/ T)inev

That is, the heat that is actually absorbed in any real process is less than what
would have been absorbed had the process been reversible. The difference
between (dQ/T)ey and (dQ/T);mey Was referred to by Clausius as “the un-
compensated heat.”

Equations (1.3) and (1.4) for reversible and irreversible processes, respec-
tively, comprise a formal statement of the second law of thermodynamics.

The direction of a spontaneous or irreversible process must satisfy the in-
equality given in equation (1.4). Since S is an extensive property of sfate, dS
can be divided into two parts, that is,

dS=d,S+d;S

where d, S represents the change in entropy of a system caused by exchange
of heat with the surroundings and d;S represents the internal production or
creation of entropy (the “uncompensated heat”). For an irreversible process
d,S +d;S>dQ|T, where d,S=dQ|T, so that d;§ > 0; for a reversible pro-
cess d,S +d;S =dQJT, so that d;S=0. Thus, an irreversible process can be
defined as one that leads to an internal production of entropy that cannot be
accounted for by an exchange of heat with the surroundings. Further, it
should be noted that for an irreversible process, d.S and dS can be positive
or negative depending upon whether heat is gained or lost by the system, but
d;S$ is always positive.

Finally, since E is a property of state, dE is independent of path and for a
given change in state is the same whether the transition is the result of a
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reversible or an irreversible process. Thus, we can substitute 7' dS for dQ in
equation (1-2) and obtain
dE=TdS-PdV+yde+ Y u;dn; (1.5)
From this equation, it is clear that S is the extensive conjugate of T in the dis-
placement or flow of thermal energy.’
Equation (1.5) is often referred to as the “Gibbs equation,” and in its most
general form it includes changes in all possible extensive properties and

equates dE to the sum of the products of intensive properties and changes in
their conjugate extensive properties, that is,

dE =} [(Intensive property); X (Change in conjugate extensive property);]
i

1.3. The Gibbs free energy and the concept of “useful work”

Although the entire fabric of classical thermodynamics can be woven
out of the first and second laws without introducing any additional properties
of state, equation (1.5) does not provide the most convenient or illuminating
. framework for the thermodynamic description of processes that take place
under conditions of constant temperature and pressure. To remedy this short-
coming, Gibbs introduced the free-energy function G, which is defined as

G=E+PV-TS (1.6)

Since E, P, V, T, and S are properties of state, G must also be a property of
state, so that dG is determined entirely by the initial and final conditions of a
system and is independent of the intervening path. From equation (1.6)

dG=dE+PdV+VdP-TdS-SdT (1.7)
and when T and P are constant
(dG)r,p=dE+PdV-TdS (1.8)

We now (arbitrarily) divide the total work done by (or on) a system into
“pressure X volume work™ and “useful work” so that

dwW=PdV +dw' (1.9)

where dW' represents the useful work and, as before, is positive when the
system performs work on its surroundings and is negative when work is per-
formed on the system.®

Substituting equation (1.9) into equation (1.1), we obtain

dE=dQ - PdV - dW! (1.10)
and substituting equaiion (1.10) into equation (1.8) we gbtain ' ‘ )
(dG)r,p=dQ-TdS - dW' (1.11)
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Since dS=d,S +d;S = (dQ/T) + d;S,
TdS=dQ+Td;S
so that from equation (1.11) we obtain
-(dG)r,p=Td;S +dW' ' (1.12)

Thus:

(a) If a system at constant T and P performs useful work on its surround-
ings by means of a reversible process, d;S = 0 and the decrease in the Gibbs
free energy of the system (-dG) is equal to the useful work performed. If the
process is irreversible, d;S > 0 and the decrease in G is greater than the useful
work performed.

(b) If a spontaneous process occurs in a closed system (one that cannot
exchange matter with its environment), dW'=0 and the decrease in free
energy of the system is reflected only by an increase in internal entropy;
that is, free energy is completely dissipated.

These considerations provide some insight into the meanings of internal
energy, free energy, and entropy. Consider for the moment an irreversible
process that takes place in a closed system (e.g., the diffusion of a solute from
a region of higher concentration to one of lower concentration). Clearly, the
internal energy of the system will not be affected since dQ and dW are both
zero. However, the free energy of the system will decrease and reach zero
when equilibrium is achieved. Thus, the potential ability of the system to
perform work is dissipated at the expense of the production of entropy; for
this reason free energy functions are frequently referred to as “work func-
tions.” The same holds for a system that can perform work on its surround-
ings. For any real process the decrease in free energy is greater than the
amount of useful or recoverable work performed. Thus, the free energy of the
universe has decreased but the internal energy is conserved.

Why? At the outset it should be stressed that thermodynamics is not based
on any particular model of matter, and the functions £ and S were intro-
duced as properties of state that simply permit a consistent description of the
energetics and direction of natural events. We cannot search for a more pro-
found interpretation of these functicns in classical thermodynamics. How-
ever, let us depart from tais secure axiomatic approach and consider a closed

-system subdivided into two compartments by a porous barrier with one com-
partment containing a monoatomic gas and the other initially void. Clearly,
the gas will diffuse (expand) into the initially'empty compartment and equi-
librium will be achieved when the distribution of atoms is random (i.e., equal
concentrations in both compartments). Now, the internal energy of this sys-
tem is simply the sum of the kinetic, translational energies of the individual
atoms and is given by E=n - m - 0?2 where n is the number of atoms, m is
the atomic mass and 9 is the mean square velocity of each atom that is only
dependent on T. It should be noted that although ¥ is a vector, v is a scalar,
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so that while E embodies the concept of motion, it is divorced from the
notion of direction. E would be the same if at any instant every atom were’
moving in the same direction as when the movements are directed randomly.
In contrast, the entropy function is a measure of the randomness of the sys-
tem. An increase in entropy or an increase in randomness may be defined as
an increase in the number of possible configurations or complexions of a sys-
tem, all of which are equally likely and accessible; the state of equilibrium
represents the most random or most probable configuration that the system
can achieve. Thus, the second law states that the direction of all spontaneous
processes is from a less random (less probable) to a more random (more prob-
able) state. Clearly, with an increase in the randomness of a system, the
ability of the system to convert its internal energy to a directed effort, or
useful work, decreases.”

At the risk of belaboring this point, let us close this discussion with a trivial
example. When a heavy weight is dropped onto a metal plate in a vacuum, the
kinetic energy of the falling weight is completely converted into thermal
energy, which in turn is reflected by an increase in the velocity of random
motion of particles (entropy). If the motion were not random, but instead
if all of the particles could be harnessed to simultaneously move upward
against the weight, the weight would rise and a spontaneous process will have
been reversed without outside intervention. The second law infers that the
probability of this occurrence is so low that this event may be considered
impossible.®

14 The electrochemical potential

We now employ the Gibbs free energy function to derive an expres-
sion for the electrochemical potential of a substance i. As we will see, the
electrochemical potential is an intensive property of a system, and a differ-
ence in electrochemical potential is the conjugate driving force for the diffu-
sional flow of matter. This property will play a central role in all of our
subsequent considerations so that the importance of understanding its mean-
ing cannot be overstated.

Let us start by considering the effect of reversibly transferring matter into
a system on G. Inasmuch as

G=E+PV-TS (1.6)
dE=dQ - PdV - dw' (1.10)
and for a reversible process
dQ=TdsS
it is a simple matter to show that

dG=-SdT+VdP-dw' (1.13)



