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Foreword

How can agents learn from experience without an omniscient teacher explicitly
telling them what to do? Reinforcement learning is the area within machine
learning that investigates how an agent can learn an optimal behavior by
correlating generic reward signals with its past actions. The discipline draws
upon and connects key ideas from behavioral psychology, economics, control
theory, operations research, and other disparate fields to model the learning
process. In reinforcement learning, the environment is typically modeled as a
Markov decision process that provides immediate reward and state informa-
tion to the agent. However, the agent does not have access to the transition
structure of the environment and needs to learn how to choose appropriate
actions to maximize its overall reward over time.

This book by Prof. Masashi Sugiyama covers the range of reinforcement
learning algorithms from a fresh, modern perspective. With a focus on the
statistical properties of estimating parameters for reinforcement learning, the
book relates a number of different approaches across the gamut of learning sce-
narios. The algorithms are divided into model-free approaches that do not ex-
plicitly model the dynamics of the environment, and model-based approaches
that construct descriptive process models for the environment. Within each
of these categories, there are policy iteration algorithms which estimate value
functions, and policy search algorithms which directly manipulate policy pa-
rameters.

For each of these different reinforcement learning scenarios, the book metic-
ulously lays out the associated optimization problems. A careful analysis is
given for each of these cases, with an emphasis on understanding the statistical
properties of the resulting estimators and learned parameters. Each chapter
contains illustrative examples of applications of these algorithms, with quan-
titative comparisons between the different techniques. These examples are
drawn from a variety of practical problems, including robot motion control
and Asian brush painting.

In summary, the book provides a thought provoking statistical treatment of
reinforcement learning algorithms, reflecting the author’s work and sustained
research in this area. It is a contemporary and welcome addition to the rapidly
growing machine learning literature. Both beginner students and experienced
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X Foreword

researchers will find it to be an important source for understanding the latest
reinforcement learning techniques.

Daniel D. Lee
GRASP Laboratory

School of Engineering and Applied Science
University of Pennsylvania, Philadelphia, PA, USA



Preface

In the coming big data era, statistics and machine learning are becoming
indispensable tools for data mining. Depending on the type of data analysis,
machine learning methods are categorized into three groups:

e Supervised learning: Given input-output paired data, the objective
of supervised learning is to analyze the input-output relation behind the
data. Typical tasks of supervised learning include regression (predict-
ing the real value), classification (predicting the category), and ranking
(predicting the order). Supervised learning is the most common data
analysis and has been extensively studied in the statistics community
for long time. A recent trend of supervised learning research in the ma-
chine learning community is to utilize side information in addition to the
input-output paired data to further improve the prediction accuracy. For
example, semi-supervised learning utilizes additional input-only data,
transfer learning borrows data from other similar learning tasks, and
multi-task learning solves multiple related learning tasks simultaneously.

e Unsupervised learning: Given input-only data, the objective of un-
supervised learning is to find something useful in the data. Due to this
ambiguous definition, unsupervised learning research tends to be more
ad hoc than supervised learning. Nevertheless, unsupervised learning is
regarded as one of the most important tools in data mining because
of its automatic and inexpensive nature. Typical tasks of unsupervised
learning include clustering (grouping the data based on their similarity),
density estimation (estimating the probability distribution behind the
data), anomaly detection (removing outliers from the data), data visual-
ization (reducing the dimensionality of the data to 1-3 dimensions), and
blind source separation (extracting the original source signals from their
mixtures). Also, unsupervised learning methods are sometimes used as
data pre-processing tools in supervised learning.

e Reinforcement learning: Supervised learning is a sound approach,
but collecting input-output paired data is often too expensive. Unsu-
pervised learning is inexpensive to perform, but it tends to be ad hoc.
Reinforcement learning is placed between supervised learning and unsu-
pervised learning — no explicit supervision (output data) is provided,
but we still want to learn the input-output relation behind the data.
Instead of output data, reinforcement learning utilizes rewards, which

xi



xii Preface

evaluate the validity of predicted outputs. Giving implicit supervision
such as rewards is usually much easier and less costly than giving ex-
plicit supervision, and therefore reinforcement learning can be a vital
approach in modern data analysis. Various supervised and unsupervised
learning techniques are also utilized in the framework of reinforcement
learning.

This book is devoted to introducing fundamental concepts and practi-
cal algorithms of statistical reinforcement learning from the modern machine
learning viewpoint. Various illustrative examples, mainly in robotics, are also
provided to help understand the intuition and usefulness of reinforcement
learning techniques. Target readers are graduate-level students in computer
science and applied statistics as well as researchers and engineers in related
fields. Basic knowledge of probability and statistics, linear algebra, and ele-
mentary calculus is assumed.

Machine learning is a rapidly developing area of science, and the author
hopes that this book helps the reader grasp various exciting topics in rein-
forcement learning and stimulate readers’ interest in machine learning. Please
visit our website at: http://www.ms.k.u-tokyo.ac.jp.

Masashi Sugiyama
University of Tokyo, Japan
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