Modeling and
Analysis of
Redl-Time

and Embedded

Systems with
UML and MARTE

Developing Cyber-Physical Systems

Bran Seli¢ Sébastien Gérard

Foreword by Richard Soley

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SS3dd OWO/NIN @Y1



Modeling and Analysis of
Real-Time and
Embedded Systems with

UML and MARTE

Developing Cyber-Physical Systems

Bran Seli¢

Séhastien Gérard

----
SAN FRANCISCO « SINGAPORE « SYDNEY « TOKYO




Acquiring Editor: Andrea Dierna

Editorial Project Manager: Kaitlin Herbert
Project Manager: Punithavathy Govindaradjane
Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and
researchers must always rely on their own experience and knowledge in evaluating and using any information or
methods described herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Seli¢, Bran.
Modeling and analysis of real-time and embedded systems with UML and MARTE: developing cyber-physical
systems / Bran Selic¢, Sébastien Gérard.
pages cm
Includes bibliographical references and index.
ISBN 978-0-12-416619-6 (alk. paper)
1. Embedded computer systems—Computer simulation. 2. UML (Computer science) 1. Gérard, Sébastien.
II. Title.
TK7895.E4253985 2014
006.2'2—dc23 2013027695

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-0-12-416619-6

Printed and bound in the United States of America
14 15 16 17 18 100987654321

qh Working together
m — 48 to grow libraries in
Book Aid

ESEVIER | madonal developing countries

www.elsevier.com e www.bookaid.org

For information on all MK publications visit our website at www.mkp.com



Related Titles from Morgan Kaufmann

-’ =
A Practi‘c'al d

Guide i SysML

Sanford Friedenthal
Alan Moore
Rick Steiner

A Practical Guide to SysML
The Systems Modeling Language
Sanford Friedenthal

Alan Moore

Rick Steiner

ISBN: 9780123786074

The Practitioner’s
Guidefo ==
Data Quality

Improvement \

The Practitioner’s Guide to Data Quality
Improvement

David Loshin
ISBN: 9780123737175

COMPUTERS
AS COMPONENTS

Computers as Components, 3rd Edition

Principles of Embedded Computing System Design

Marilyn Wolf
ISBN: 9780123884367

EMBEDDED TECHNOLOGY™ SERIES

Real Tlme UML

Workshop for

Systems

Bruce Powel Douglass

Real-Time UML Workshop for Embedded
Systems

Bruce Powel Douglass
ISBN: 9780750679060

.
Systems
Engineering
with SysML/UML

Systems Engineering with SysML/UML
Modeling, Analysis, Design

Tim Weilkiens
ISBN: 9780123742742

Business Modeling: (;
A Practical Guidefo
Realizing Business Value

Business Modeling
A Practical Guide to Realizing Business Value

David M Bridgeland
Ron Zahavi
ISBN: 9780123741516



Modeling and Analysis of
Real-Time and

Embedded Systems with
UML and MARTE







To Lillian, Andrew, Matthew, and Sandy
and

To Marie, Zélie, Nicole, and Jean-Marie






Acknowledgments

The authors express their gratitude and indebtedness first and foremost to Professors Murray
Woodside and Dorina Petriu of Carleton University in Ottawa, Canada, who made a major contribu-
tion to the text of chapter on performance analysis (Chapter 11), to Drs. Sara Tucci-Piergovanni and
Chokri Mraidha for their key contributions to the chapter on schedulability analysis (Chapter 10), and
to Dr. Richard Soley, Chairman and CEO of the Object Management Group, who graciously agreed
to write the foreword. In addition, we would like to thank the staff of the Laboratoire d’Ingénierie
dirigée par les modeles pour les Systemes Embarqués (LISE) of the Commissariat a l’Energie
Atomique (CEA) LIST group in Gif-sur-Yvette, France, who contributed in various ways to this
effort and, in particular (in alphabetical order): Arnaud Cuccurru, Frédérique Descreaux, Hubert
Dubois, Agnes Lanusse, Ansgar Radermacher, Frangois Terrier, Patrick Tessier, and Yann Tanguy.

The authors are also extremely grateful to those hardy expert reviewers, Frederic Mallet, Chokri
Mraidha, and Rob Pettit, whose detailed comments, corrections, and suggestions have greatly
improved the quality of the text. Any remaining errors and rough spots are the sole responsibility
of the authors. Thanks are also due to our very supportive editors at Morgan Kaufmann (Elsevier),
Andrea Dierni, and Kaitlin Herbert, who provided general guidance and also helped us navigate
the intricacies of preparing the text for publication. We also acknowledge the contribution of Pavel
Hruby, who prepared the Visio templates for UML 2, which were used in constructing most of the
diagrams in the book.

Last but most definitely not least, we both owe unconditional thanks for the support of our respec-
tive families, who had to endure our absences and distractions while we worked on this manuscript.
Hence, we dedicate this book to them.

Bran Seli¢
Nepean, Canada

Sébastien Gérard
Gif-sur-Yvette, France

xiii






Foreword

Early in this excellent tome you will find a terminological quibble, one of the myriad quibbles over
terms found in the juvenile field of computer science. Should we say model-based engineering, model-
based development, or model-driven development? There are really two arguments in that quibble:

1. Is it model-based or model-driven? These are functionally the same, based on the concept that
complex organizations of systems should be based on (driven by) lower cost (and generally more
abstract) models of those organizations.

2. Is it engineering, development, or (dare I say) architecture? In fact modeling should be used to
drive development; it should be used to specify an architecture (after all, that is precisely what
is done in the building trades); and the process of developing a working organization, device, or
software program should be engineered based on a model.

Obviously, as the progenitor of the term, I like the term Model-Driven Architecture (MDA), the
name that in 2001 pulled together the many streams of modeling-based development of software and
other complex systems. Terminological quibbles aside, the importance of modeling of complex sys-
tems—whether software, ships, buildings, weapon systems, cabbages, or kings—is quite clear:

e Abstractions of complex systems are extraordinarily valuable in engineering processes for
developing predictions of systems, from the usability of those systems to the likely failure modes
and useful lifetimes of those systems.

e Abstractions of complex systems allow the pinpointing of subsets or parts of complex systems for
analysis, and further the likely effects of integrating systems of systems.

e Abstractions of complex systems are generally much less expensive than the actual expressions of
those systems (even in the case of software), and can thus serve as risk-mitigation approaches to
the problems of large systems engineering.

None of this should be surprising to even the casual observer of engineering processes. Why, then, am
1 asked quite often why so many software developers do not model their systems before committing code
to paper? The answer, of course, has more to do with human behavior than technology. It is a matter of
training, of expectations, and of misunderstandings about the full costs of software development, and most
importantly, it is the same reason that buggy whips were still made in quantity in 1910, when horse bug-
gies were already on their way out as a primary method of transportation in favor of automobiles.

1P IS KeV 10 €
f )

While engineering has been developed over thousands of years—and as the authors of this book
note—it had to be developed. That is, over the thousands of years of the creation of the engineering
discipline, proven solutions have been developed, tested, and embedded in the body of knowledge of
engineering. The authors of this tome state:

The use of models and modern model-based engineering technologies and related industry stand-
ards as a means of reducing accidental complexity in the development of real-time and embedded
software is the primary theme of this book.

Xv



XVi Foreword

In fact, it is more than the reduction of accidental complexity that models offer (see above), and it
is far more than the development of real-time and embedded software.

A pedagogical example is relevant. On August 10, 1628, the great new warship Gustav Vasa
(named after one of the greatest rulers of his time, Gustav Eriksson, otherwise known as Gustav I,
King of Sweden) sailed proudly into its own home harbor and promptly sank into the Baltic mud,
with the loss of 53 lives. Ships had been built for time immemorial all over the world, yet the nascent
naval engineering field had not discovered how to compute the center of gravity of a large complex
engineering system (like a ship), although it was certainly understood that a ship’s center of gravity
must always be below the waterline (or it will shortly find its way below the waterline, by process of
sinking). This enormous, visible, deadly, and costly failure would spur (as all engineering failures do)
a great leap in naval engineering, most importantly in modeling naval vessels. Further project man-
agement issues from the design and development of the Gustav Vasa (the untimely death of Henrik
Hybertsson, the shipwright; the constantly changing specifications for the ship and its armaments;
and most importantly a failed simulation of seaworthiness conducted before launch) contributed to a
callosal failure, which was also a tremendously valuable failure that guaranteed better naval engineer-
ing in the future.

Engineered systems have always had a rather high level of expectation of success and correctness
by the public at large; as engineering contributes to a better standard of life worldwide, it also engen-
ders those expectations. Though civil engineers are aware that all engineered structures have some
probability of failure, the public continues to be surprised when bridges fail; though naval engineers
are aware of the same facts, the public continues to be surprised when ships sink. This gap can only
be bridged by shared expectations of quality and cost, and quality and cost can only be brought into
the engineering discipline through modeling.

Cyber-physical systems
There are various names for the connected nature of engineered systems that are largely (or entirely)
dependent on correct underlying software systems:

e Cyber-physical Systems. Though this term directly brings together the cyber and physical worlds,
it is quite a complicated term for the average person.

e [nternet of Things. Though this term sounds fun for academics and other researchers, it seems too
general to be acceptable.

e Industrial Internet. This term brings together the term most people understand to have changed
the way we read, write, entertain ourselves, listen to music, and conduct many other activities (the
Internet) with the largely unchanged way in which industrial systems are developed, delivered,
and measured (consider the continuing use of ladder diagrams in discrete programmable control
systems as a good example).

This move of industrial systems to the Internet only aggravates the need for correctness and com-
pleteness of software systems, pushing ever higher the expectation of correctness for cyber-physical
systems.



Foreword Xvii

is a domain-specific language better than UML?

Given these expectations, how do we bring better development discipline to the software world, espe-
cially the real-time and embedded software world? And how to we deal with the bewildering blizzard
of modeling languages? Is the Unified Modeling Language (UML) the best choice, or should we take
a more domain-specific language (DSL) approach to ensure our designs are best matched to the sys-
tem under development?

The reality is, of course, much simpler: the UML is just one of a large family of related modeling
languages (including at least SysML, SoaML, UPDM, BPMN, UML for Systems on a Chip, and oth-
ers), and is in fact a DSL (designed for use in software development, but used in other areas as well).
The subject of this book, Modeling and Analysis of Real-Time and Embedded Systems (MARTE), is
a DSL for designing, analyzing, and building embedded & real-time systems.

Implementations of the MARTE language are quite easy to find today, even if this book appears to
be the first tome dedicated to its explication. Just as ships should never have been developed without
understanding center of gravity issues after the failure of the Gustav Vasa, software-driven real-time
and embedded systems should never again be built without a thorough analysis through the use of the
MARTE language; to do so would simply be a negligent approach to engineering embedded systems.
This makes this book indispensable for any engineer building the Industrial Internet of today and
tomorrow, based on real-time and embedded systems.

May the Gustav Vasa sail again, this time without sinking!

Richard Mark Soley Ph.D.
Chairman and Chief Executive Officer,
Object Management Group, Inc.,
Brussels, Belgium






Preface

An honourable work glorifies its master—if it stands up
Lorenz Lechler, Instructions, 1516

Regardless of which statistics we are inclined to believe, there is little doubt that software systems
all too often fail to “stand up.”! There are many reasons for this, not the least of which is the often
overwhelming complexity of such systems [4]. If we make a crude comparison with mechanical sys-
tems by equating a line of program code to a component in a machine, then even a simple 5,000-
line program easily qualifies as a reasonably complex system in most people’s judgment. Yet, there
are numerous software systems in use today that incorporate millions and even tens of millions of
lines of code.

In addressing complexity, it is helpful to distinguish between two types of complexity: (1) essen-
tial complexity, which is inherent to the purpose and nature of the system and is, therefore, unavoid-
able and (2) accidental complexity, that is, complexity that arises from the use of inadequate or
ineffective methods and tools [2].

When it comes to real-time software systems, much of the essential complexity stems from the
inescapable complexity of the physical world with which these systems interact. Needless to say,
this world is highly concurrent, often unpredictable, interconnected in complex ways, and extremely
diverse. Yet, the system and its software are required to cope successfully with at least some of these
phenomena. Compounding our difficulties are resource limitations, such as limited processing speeds
and limited amounts of memory, which further constrain our ability to address these issues. We have,
over time, evolved a set of techniques and technologies to mitigate some of these difficulties, such
as the use of mutual exclusion mechanisms for dealing with concurrency conflicts, or various redun-
dancy patterns for dealing with failures. But, no matter how hard we try, these are essential character-
istics of the problem, which cannot be eliminated by either process or technology.

Accidental complexity, on the other hand, is something that we can and, clearly, must strive to
eliminate. Sadly, it is the authors’ experience that real-time software development abounds with acci-
dental complexity, perhaps because it is perceived as outside the mainstream of software engineering.
It is typically developed using tools and methods that do not account for the specific problems of the
real-time domain. A classical and notable example of this can be seen in the desire to ignore entirely
the physical aspects of computing. For example, the well-known computing pioneer, Edsger Dijkstra,
once wrote: “I see no meaningful difference between programming methodology and mathematical
methodology.” suggesting that software development should be a branch of applied mathematics [5].
This implies an idealized and, some would say, idealistic approach to software design, where physical
factors are either ignored or deemed secondary. This line of thinking has led to development meth-
ods based on the simplifying but often inappropriate assumption that the time required to execute
complex algorithms is negligible (the so-called “‘zero-time” assumption), or that there is a infinite

""The website http://www.it-cortex.com/Stat_Failure_Rate.htm maintains a collection of sources focusing on studies of soft-
ware failure rates. Although there is some variance in the results across the different studies, they all indicate rates that
would be deemed unacceptable in more traditional engineering disciplines.

Xix



XX Preface

supply of necessary resources available (memory, bandwidth, etc.). In fact, entire development meth-
odologies have evolved that actively discourage any concerns with the physics of computing, which
is reflected in oft-quoted but much misunderstood phrases such as “premature optimization” or “plat-
form-independent design.” Design issues related to the physical aspects of a computing system are
typically bundled into a nebulous category referred to as “non-functional” issues, to be dealt with
only after the “main” problem of functionality has been solved.

It is, of course, essential that a design realizes the desired functionality, but, as has often been
pointed out producing the right output at the wrong time is still wrong. A program that takes 25 hours
to predict tomorrow’s weather is not particularly useful. However, any engineering problem needs to
be addressed in its full context, which, at least in the case of real-time systems, necessarily includes
the physical dimension of computing. After all, no matter how far we advance our software tech-
nologies, they will always require hardware to run. In a very pragmatic sense, computer hardware
constitutes the raw material out of which our software systems are constructed. And, as with any tech-
nology, the raw material used and its properties must be accounted for and proper trade-offs made
during system design.”

This incursion of the physical into the logical world of software is what distinguishes the design
of real-time software most from other types of software. It requires that we extend our tools and
methods beyond mathematics and enter the realm of engineering. Fortunately, engineering is a long-
standing and well-developed discipline; it abounds with proven solution patterns that have evolved
over thousands of years. One of the most fundamental and most useful of these is the use of mod-
els and modeling to support design. Models are used in many different ways in engineering, includ-
ing, notably, helping us predict the key characteristics of designs before committing full resources
to implementing them. This not only improves the overall reliability of our designs but also greatly
reduces engineering risk and development time.

The use of models and modern model-based engineering technologies and related industry stan-
dards as a means of reducing accidental complexity in the development of real-time and embedded
software is, in a way, the primary theme of this book.

About this book
Why this book
Interest in model-based methods for designing software has grown significantly since the introduction
of the Unified Modeling Language (UML) and its adoption as an industry standard in the late 1990s.
Quite naturally, this interest has extended to the real-time domain, resulting in the adoption of several
real-time-oriented modeling language standards based on UML. The first of these, the UML Profile
for Schedulability, Performance, and Time [12], was supplanted by the more advanced MARTE
standard [13], which was aligned with the most recent major revision of UML, UML 2 [14].

MARTE, which stands for Modeling and Analysis of Real-Time and Embedded systems, is a pro-
file of UML. A UML profile is a domain-specific interpretation of the general UML language that

%It is good to keep in mind a quote from a 2,000-year-old engineering text by the Ancient Roman engineer, Vitruvius: “All
machinery is derived from nature, and is founded on the teaching and instruction of the revolution of the firmament.”[18]



Preface XXi

specializes some UML concepts to reflect domain phenomena and concerns. Because a properly
defined profile is conformant to the rules and concepts of standard UML, it has the potential to reuse
some of the existing UML tools, methods, and expertise. In the specific case of MARTE, the profile
was not designed to displace UML but as a complementary domain-specific language.

MARTE provides broad coverage of the real-time domain and is the result of the collective work
of numerous domain experts. The current version of the standard extends to almost 800 pages and is
structured as a kind of reference manual with only a modicum of methodological guidance,® which
is the standard format for all language specifications provided by the Object Management Group
(OMG). Quite naturally, this presents an intimidating proposition for someone interested in learning
about MARTE.

Consequently, this book is intended to provide a user-friendly introduction to the MARTE con-
cepts and also to act as a methodological guide for their application in practice. It serves to iden-
tify and describe the key ideas behind MARTE, based on reduced and approachable (but nevertheless
technically accurate) descriptions. However, beyond its core purpose as an introductory text, we
expect that, because of its methodological content, the book will serve as a convenient user guide and
reference even to expert MARTE users.

Modern model-based engineering for software development

The technical foundations for this book are the UML language and an approach to software develop-
ment variously referred to as model-based engineering, model-based development, or model-driven
development (we will use only the first of these in this book). Whatever we choose to call it, the
essence of this approach is based on the use of models as an essential element of the development
process. That is, it goes beyond the traditional exploitation of software models merely as a kind of
power-assist and documentation facility. In particular, it means using models as an engineering tool
for doing predictive analyses of key characteristics of proposed designs. In addition, given the unique
nature of software, models of software systems can be used in a number of other ways, including,
notably, computer-based code generation. This can greatly reduce the likelihood that design intent,
which is captured in a model, will be corrupted during implementation. And, of course, it can also
improve both productivity and overall design quality.

The OMG, UML, and MDA

The OMG* is an open not-for-profit computer industry consortium that develops and issues inter-
national standards for a wide range of computing-related technologies. It was established in 1989,
focusing initially on distributed middleware standards, such as CORBA. However, with the increased
interest in the object-oriented design methods that occurred in the mid 1990s, it broadened its scope
to modeling and modeling languages for computer applications. The initial outcome of this expanded
initiative was the Unified Modeling Language standard [14].

*This is by intent—specifications of this type generally avoid methodological aspects in order to remain open to a range of
different approaches.

*http://www.omg.org



