

Philip Robinson

Computer

* Programming

Cassell
London

Grateful acknowledgement for permission to use the photographs and
diagrams reproduced in this book is made to the following
(numbers refer to the pages on which the pictures appear):

British Overseas Airways Corporation (45); IBM (UK) Limited
(viii, 10, 40, 51, 57, 67); International Computers Limited (iii, 2, 7, 13,
18, 20, 33, 35, 38, 39, 41, 52, 60, 64, 69, 72).

Cover photograph: International Computers Limited

The pattern on the title page was produced by a computer.

Cassell Ltd.
10 Greycoat Place, London SW1P 1SB

Copyright © Collier-Macmillan Publishers, 1972
© Cassell Ltd, 1982

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission in writing of the publishers.

First printing 1972
Second printing 1979
Third printing 1981
Fourth printing 1982

ISBN 0 304 30412 3

Printed and bound in Great Britain at
The Camelot Press Ltd, Southampton

PREFACE

This Special Enghsh series introduces titles on a widé range of technical
subjects that will be of interest to students of English as a second
language. Each volume illustrates the special English of a particular
trade or profession in both its.spoken and written forms. It is not
possible, of course, for books of this size to cover the subject matter
exhaustively, so the authors have concentrated on those topics and
activities that should have the widest appeal. The conversations which
are the basis of each chapter or unit are deliberately written in the
colloquial and idiomatic speech used by technicians and specialists as
they go about their everyday activities.

It must be emphasized that these books are not intended to teach
the subject matter itself, although the technical content is accurate in
every respect. Nor are they intended to teach the introductory stages of
English, It is assumed that the reader is already familiar in his own
language with the subject matter of the book, and has a good grounding

" .in the basic grammatical patterns and vocabulary of English. He will

use these books to improve his knowledge of English within the frame-
work of a technical vocabulary that is of interest to him either privately
or professionally.

The authors in this series each have their individual approach, but all
the volumes are organized in the same general way. Typically, each book
_is based on a series of situational dialogues, followed by narrative
" passages for reading comprehension. Exercises give the student practice
in handling some of the useful and more difficult patterns, as well as
lexical items, that occur in each unit. Tape recordings, of the dialogues
and selected exercises, may be used either in the language laboratory
or for private study. Each volume is provided with a glossary of

technical terms, with i.p.a. equivalents as used in the Daniel Jones
Pronouncing Dictionary.

PETER STREVENS
General Editor

vi

INTRODUCTION

This book is a sequel to Special English: Computers, which discussed the
concepts involved in both hardware and software, as well as the work of
a variety of computer personnel.

Computer Programming concentrates on the work of a key figure in
the new world of computers, the Programmer. It explains what he does,
the techniques he uses, and the different fields in which he may special-
ize. But like the other books in the series it is primarily designed to
teach English in the context of a particular occupation. Each unit
includes a Dialogue, in which programmers talk to each other using the
register of their profession; a Reading and Comprehension passage;
and Exercises, for structural practice and comprehension.

At the end of the book there are Keys to the Exercises, and a Glossary
of technical terms (which are asterisked on their first occurrence in the
text). The International Phonetic Alphabet is used as a guide to pro-
nunciation. Colloquial expressions are footnoted.

The book is not a substitute for a course in computer programming,
but it will enable a student whose mother tongue is not English to take
such a course with confidence.

The tape recording that accompanies the book may be used by the
teacher in the classroom or the language laboratory. For the student
working alone, it will provide a model for pronunciation as well as a
means of taking dictation for practice in spelling. The exercises have
pauses for student response, but there are no pauses in the dialogue.
This has been done on purpose to provide the maximum amount of
recorded material. Most tape recorders are now equipped with a pause
button which enables the listener to stop the tape after each sentence
and repeat it aloud before proceeding to the next one. If pauses are
required for language laboratory work, a copy may be made and the
pauses inserted of a length to suit the requirements of the students.

vii

104 COMPUTER PROGRAMMING

store occupancy ['sto: ‘skjupansi] The number of store locations occupied by a
program while it is being run.

subfile ['sabfail] A file contained within the structure of another file on a storage
medium.

subroutine ['sabru:tizn] A set of instructions designed to perform a specific task
and capable of being obeyed over and over again by a program, or by more than
one program. It is therefore ideally written as a self-contained module,

subscript ['sabskript] The numeric key which identifies a particular element in a set
or table.

subset ['sabset] A set which is part of a larger set.

symbol state table ['simbl ;steit teibl] A table whose clements specnfy that
different subroutines are to be performed according to the values of successive
input parameters. The parameters may be, for example, the characters of a word
in a source program that is being analysed by a compllcr

syntactic [sin'tektik] Concerning the rules governing the relations of words ln
language structures.

systems analyst ['sistamz ;nalist] One who investigates the data processing of an
organization to define how it may best be performed by a computer, and writes the
specifications from which the computer programs are written.

systems programmer ['sistamz ,prougrams] A programmer who writes general-
ized routines designed to be used in all the installations of a particular computer,
such as compilers, utility routines, sort programs, etc.

table ['teibl] A set of data organized so that cach element may be uniquely identified
by a key held in the element, ot by the position of the element in the table,

tabulators ['tzbjuleitaz] Data processing machines which antedated the computer,
and which could read packs of punched cards, tallying fields and printing eut totals
and subtotals. They could be programmed by means of plugboards.

tallying ['tzliig] Counting, or keeping count.

test data ['test deito) Data often artificially created, to test a program under
development.

trace routine ['treis ru:ti:n] A diagnostic aid which monitors the progress of a
program by printing out the contents of specified areas, signalling all transfers of
control and so on.

transaction processing [tren'sekfon ,prousesip] The processing of information
piecemeal, as it becomes available or at specified intervals, mstud of waiting until
it is batched up with other similar information.

tree [tri:] A set of data organized as a hierarchy.

truncation [trag'keifan] The deletion of digits from one end or another of a
number, e.g. because it is too big to hold in the storage location allocated to it.

utility routino [jus'tili ruz ti:n] A standard library program of frequent use in all
computer systems, such as a program for printing out the contents of a magnetic

tape. .
validate ['veelideit] Check for correctness, e.g. of input data. Noun: validation.
validity check [vo'liditi ,tfok] A check that data conforms to certain rules or is within

certain limits.
vector ['vekts] A one-dimensional table.
virtual store ['va:tfusl ,sta:} A concept which allows the programmer to eonsldet

that he has available to his program more main store than the phyucal core store

of the computer for which he is programming.)
write ring Flrait .nn]AphysncnldevmeWtoamamcmpemltoaﬂw or

prevent, wntmg to-that reel.

A 54/1034 K (%6-2/A1034)

RIGRMEAE, ' A 00085
HANEr

UNIT 1

THE JOB OF THE COMPUTER PROGRAMMER

Dialogue

‘Peter Bracknell is joining a computer manufacturer as a junior
programmer.

Manager:

Peter:

Manager:

Peter:
Manager:

Glad to have you with us, Peter. Have you done any
programming before?

I'm afraid not. In fact I don’t really know what program-
ming involves. 1 took the aptitude test, of course, but all
that told me was that you wanted to find out if I was any
good at solving logical and semantic problems.

Well, évidently you are, so that’s half the battle.}

A computer programmer is first and foremost? an inter-

preter. He’s given a problem described in a natnral language.
such as English, and he has to break it down into logical
steps and then translate the steps into a language understood
by the computer.
What sort of problems do programmers have to deal with?
Basically, three types. Firstly, scientific: things like weather
forecasting, statistical analysis, integration—anything
related to sciences such as physics, biology, mathematics,
astronomy, or the technologies used in industry.

Many scientific programmers work in universities or
research establishments. Some of them are scientists or
technologists first and programmers second. They only
want to know enough programming to solve their own
particular problems.

1 half the battle: half the problem has been dealt with successfully
2 first and foremost: mainly, predominantly

Peter:

Manager:

Peter:
Manager:

Peter:

Manager:

But it’s different with commercial programmers, isn’t it? I
mean, they often go straight into programming from univer-
sity, rather than working as accountants or bank clerks
first.

A lot of them do. They may write programs to handie
invoicing, or share registration, or stock control, but they
only.learn about these things as they go along. The *speci-
fications of their problems are written by *systems analysts.
Which type of work shall I be doing?

Neither! We’re working for a computer manufacturer, not a
user, so we’re called *systems programmmers. We write
*software that acts as a *buffer between scientific and
commercial programs, and the machine. Things like
*compilers and *assemblers, *executives and *operating
systems—not to mention *utility routines to do such things
as sorting and printing out the contents of magnetic tapes
and *discs.

Because every user has to sort his files and print out his
magnetic *media, so there’s no point in each one writing
his own program to do them?

That’s right, And when we sell a computer we supply all
this systems software as part of the package deal—though
nowadays some manufacturers are selling the software
separately.

But whatever type of programs they write, scnentlﬁc
commercial, or systems software, alt programmers have
three main objectives.

They must write-programs that work. They must write
them on tims: And they must leave them fully *documented
so that they can be easily taken over, maintained and
amended by other programmers.

UMT 1 3
EXERCISB 1: STRUCTURAL PRACTICE

Notice this structure from the conversation:
(No), We're working for a computer manufacturer, not a user.
Use this structure to respond to the following questions:
Example: Are we working for a user?

Prompt: computer manufacturer
Response: No, we’re working for a computer manufacturer, not a

user.

Now you do it.

1. Are we working for a user? computer manufacturer
2. Are we testling specifications ? programs
3. Are we writing assemblers ? compilers
4. Are we solving scientific problems? commercial problems
5. Are we seliing the hardware ? software
. 6. Are we running the installation? marketing side
7. Are we concerned with programming ? systems analysis
8. Are we printing out magnetic tapes ? discs

EXERCISE 2: PROGRESSIVE SUBSTITUTION DRILL

Statement: What sort of problems do programmers have to deal -

with ?

Prompt: solve .

Response: What sort of problems do programmrers have to solve?

Now you do it.

Statement: What sort of problems do programmers have to deal
with?

Prompts:

1. solve 5. jobs

2. type 6. operators

3. managers 7. techniques

4. handle 8. learn

4 COMPUTER PROGRAMMING
EXERCISE 3: FURTHER STRUCTURAL PRACTICE

Change the following statements into questions:

The specifications are written by systems analysts.
Every user has to sort his files.

We supply all this systems software.

We’re working for a computer manufacturer.

He has to break it down into logical stages.

Some of them are scientists and technologists.

They go straight into programming from university.
They can be easily taken over by other programmers.

PN E WD -

Reading and Comprehension

A program is a sequence of instructions that must be obeyed to achieve
a given result. A knitting pattern or a carpet design is a program, and so
are the directions one is given to arrive at some destination: *“Take the
second turning on the left, bear right at the post office, continue to the
first roundabout and then take the third exit . . .”” If your car won’t start,
the series of tests you make is a program, and a mathematical formula
such as x=(a%+b?)/2ab is another type, instructing you to perform
certain operations on the variables a and b to arrive at a value for x.

A computer program is analogous to all these, and differs from them
only in being written in an artificial language, sometimes similar to
algebra or a natural language such as English, but restricted to the types
of operation that a computer can perform. A computer programmer has
to I¢arn such languages. He need not be a mathematician, but he has to
have the ability to think logically, and he will need training in special
programming techniques.

EXERCISE 4: QUESTIONS ON THE DIALOGUE AND
READING PASSAGE

What is a computer programmer, first and foremost ?
What are the three different types of program?
Name some examples of systems software.

Is a knitting pattern a program?

Pwbhr-

UNIT1 5§

5. Give an example of a natural language.

6. Must a programmer be a mathematician?

7. What sort of tasks are performed by utility routines?
8. Name sonie examples of commercial programs.
EXERCISE 5

Complete the following sentences, using the appropriate words from the
list below:

FR Mo Al op

AR RN

commercial

. carpet

specifications
main

logical
separately
sort

. establishments

.

He has to break it down into steps.
Many scientific programmers work in research
It’s different with programmers, isn’t it?

The of their problems are written by systems analysts.
Every user has to. his files. .

Some manufacturers are selling the software
All programmers have three objectives.
A design is a program,

UNIT 2

THE PROGRAMMER'S TOOLS

Dialogue

Peter chats with his section leader, Geoff.

Peter:

Geoff:

Peter:
Geoff:

Peter:
Geoff:

Peter:

Geoff:

I've just been round the machine room and seen all the *hard-
ware—the *central processor and *input-output units. Thought
I'd better get to know the tools we use—though they're a bit
more expensive than hammers and chisels!

Yes, but the hardware is chiefly used by the operators and
engineers. We seldom go near it. What you've got to learn to

‘use are our software tools.

You mean program specifications and *flowcharts?

And more specialized things like computer languages. There's a
whole spectrum of them, ranging from ‘“‘high-level” to “low-
level”, each designed for a special purpose. Languages such as
*COBOL, *FORTRAN, *ALGOL, *JOSS, *APT, *BASIC,
*PL/1 and dozens of others. But don’t get alarmed; you don't
have to learn all of them. And their vocabularies only contain a-
hundred or so words. Not like English, with nearly-half a
million!)

What do you mean by “high-level” and “low-level” ?

“High level” languages are- *problem-oriented, similar to
natural languages or aigebra. ‘“‘Low-level” - are- machine-
oriented, closer to the language which the machine understands.
The lowest level being *machine code ?

Yes. As you know, the *central processor contains thousands of
tiny circuits, each of which tan be in one of two states, either
“on” or “off” like a switch. Now, if you combine these circuits,
in groups of, say, six, you can get sixty-four possible combina-
tions of switch settings for each group. Each combination can
activate a different function of the machine. :

6

Peter:
Geaoff:

Peter:
Geoff:
Peter:

Geoff:

Peter:

Geoff':

COBAL program sheets

uUNIT 2 7

I see. You mean, one might start up the card reader?

Yes, and another might add the contents of a *store location
into a fast *register. In other words, each combination is an
instruction to the machine, and it’s perfectly possible to feed
them directly into the machine from a *console, just as you set
the switches on a control panel.

In any machine code—there's a different set for each different
computer—there are usually about fifty to a hundred and fifty
different instructions.

But you said there could only be sixty-four different com-
binations. .

That’s if you combine the circuits in groups of six. Buf 'you can
also combine them in groups of eight, for example.

So to tell the machine to read a magnetic tape you'd have to
type in a binary pattern—101011, say—at the console?

That’s what programmers did in the beginning. But nowadays
they can *punch a sequence of instructions on cards, and then
type an instruction to the machin€ to read the cards and obey
the instructions on them.

It must be a bit tedious, though, to have to remember the binary
patterns for all the possible instructions.

It is. That’s why *assembly languages were devised. Instead of
punching 101011, you simply punch RD, the *mnemonic for
“Read”.

o N ¢
* ® \ i \ \ el A \
i ‘-:‘t,‘,".\"'* il] \/\Jr ‘\ -
POt I MEs ——
fuo - a ‘:a-’o‘

AT (6c ey, —_—
p €N TAPE MRoerasy lkk(;) .
< FReatm L2) -

FATON vupp . '.-‘.“-‘-7!;—.)“. -

te ™ Prving, =
[Botreq, PRoo .2y y, i

8 COMPUTER PROGRAMMING

Peter:
Geoff:

Peter:
Geoff:

Peter:

Geoff:

But how can the machine understand these mnemonic$?

It can’t. You have to have a special *assembler program to
translate the mnemonics into machine code. That’s an example
of the sort of programs we write, a program that translates
another program from source form into machine code.

Is an assembly language “*high-level”, then?

Sorry, no. It’s still low-level because it’s one-for-one. one
mnemonic such as LDX is translated into one machine code
instruction meaning ‘‘Load into Accumulator” An instruction
in a high-level language, on the other hand, often translates into
several machine code instructions, sometimes as many as forty.
So I'll be learning some high-level and low-level languages on
my course ? ’

Yes, but since your course doesn’t start for some weeks you'll
be learning some basic programming techniques to start with—
techpiques you'll use whatever language you're writing in.

EXERCISE 1: STRUCTURAL PRACTICE

Notice this structure from the conversation:

(No,) the hardware is used by the operators.

Use this structure to respond to the following questions:

Example: Do we use the hardware?
Prompt: the operators)
Response: No, the hardware is used by the operators.

Now you do it.

1. Do we use the hardware? the operators

2. Do we write the specifications ? systems analysts

3. Do we punch the cards? DP staff

4. Do we make those decisions? committees

5. Do we invent the instructions? language designers
6. Do we design the software? senior programmers
7. Do we learn these languages? commercial users

8.

Do we maintain the peripherals? - the engineers

UNIT 2 9
EXERCISE 2: PROGRESSIVE SUBSTITUTION DRILL

Statement: You don’t have to learn all of them.
Prompt: We
Response: e don’t have to learn all of them.

Now you do it.

Statement: You don’t have to learn all of them.
Prompts:

- We
the languages
know
the peripherals
use
Don’t we
operate
machines

P NN h W=

EXERCISE 3: FURTHER STRUCTURAL PRACTICE

Change the following sentences into the passive.

Example: You combine the circuits in groups of six.
Response: The circuits are combined in groups of six.

Now you do it.

You combine the circuits in groups of six.

You’d have to type in a binary pattern.

They can punch a sequence of instructions on cards.
That’s what programmers did in the beginning. .

How can the machine understand thegse mnemonics?
What do “high-level” and “low-level” mean?

The central processor contains thousands of tiny circuits.
One instruction might start up the card reader. .. -

el AR S ol ol e

10 COMPUTER PROGRAMMING
Reading and Comprehension

Low-level languages are “machine-oriented” because each instruction
is a mnemonic representing a single machine code binary instruction. In
a high-level language such as COBOL, however (COBOL is an *acronym
for Common Business Oriented Language), an instruction such as
ADD A TO B may generate three machine code instructions:

Load A into Fast Register
Add B into Fast Register
Store contents of Fast Register in B

The COBOL instruction OPEN, when translated by a compiler, may
generate even more machine code instructions tQ perform such functions
as: :

activate a particular tape deck;

read the first block on the tape;

check whether the name in the first block is the name of the file to be
read;

perform other checks on the “tape label”;

set a switch defining the file as “open”.

A program written in a high-level language is called a ‘“‘source
program the machine code version into whlch it is translated is an

“object pro;ram”

Writing in a high-level language is easxer and quicker for a program-
mer than using machine code, but there are two other major advantages.
It is compatible, i.c., his program can be run on any machine, provided
there is a compiler to translate it into that machine’s code. Then,
addresses in his program can be given names: all addresses can be
relative to the addresses of the names, and this facilitates the trans-
ference of his program from one machine to another.

Magnetic
‘ape units

UNIT 2 11

EXERCISE 4: QUESTIONS ON THE DIALOGUE AND
READING PASSAGE

Name some computer languages.

Are low-level languages problem-oriented ?

Which is the lowest-level language?

What does “‘one-for-one” mean?

What is a mnemonic?

What is the translated version of a source program called ?
Name some advantages of writing in high-level ianguages.

Approximately how many instructions are there in any machine
code?

Ladba TR (I ol ol s g

EXERCISE 5

Use the following words and phrases in sentences of your own to show
that you understand their meaning and use:

compatible
assembler program
software
vocabulary
instruction

binary

. techniques
8.xpunch

R N R

