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Preface to the Third Edition

The aim of this work is to present a broad overview of the theory of hyperbolic con-
servation laws, with emphasis on its genetic relation to classical continuum physics.
It was originally published a decade ago, and a second, revised edition appeared in
2005. It is a testament to the vitality of the field that in order to keep up with re-
cent developments it has become necessary to prepare a substantially expanded and
updated new edition. A new chapter has been added, recounting the exciting recent
developments in classical open problems in compressible fluid flow. Still another ad-
dition is an account of the early history of the subject, which had an interesting, tu-
multuous childhood. Furthermore, a substantial portion of the original text has been
reorganized so as to streamline the exposition, update the information, and enrich
the collection of examples. In particular, Chapter V has been completely revised.
The bibliography has been updated and expanded as well, now comprising over fif-
teen hundred titles. The background, scope, and plan of the book are outlined in the
Introduction, following this preface.

Geometric measure theory, functional analysis and dynamical systems provide
the necessary tools in the theory of hyperbolic conservation laws, but to a great ex-
tent the analysis employs custom-made techniques, with strong geometric flavor, un-
derscoring wave propagation and wave interactions. This may leave the impression
that the area is insular, detached from the mainland of partial differential equations.
However, the reader will soon realize that the field of hyperbolic conservation laws
is far-reaching and highly diversified, as it is connected by bridges with the realms of
elliptic equations, parabolic equations, equations with dispersion and the equations
of the kinetic theory.

Twenty-five years ago, it might have been feasible to compose a treatise survey-
ing the entire area; however, the explosive development of the subject over the past
three decades has rendered such a goal unattainable. Thus, even though this work
has encyclopedic ambitions, striving to present a panoramic view of the terrain, cer-
tain noteworthy features have been sketched very roughly or have been passed over
altogether. Fortunately, a number of textbooks and specialized monographs treating
some of these subjects in depth are now available. However, additional focused sur-
veys are needed in order to compile a detailed map of the entire field.
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Introduction

The seeds of continuum physics were planted with the works of the natural philoso-
phers of the eighteenth century, most notably Euler; by the mid-nineteenth century,
the trees were fully grown and ready to yield fruit. It was in this environment that
the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems
in divergence form, commonly called hyperbolic conservation laws; and these two
subjects have been traveling hand in hand over the past one hundred and fifty years.
This book aims at presenting the theory of hyperbolic conservation laws from the
standpoint of its genetic relation to continuum physics. A sketch of the early his-
tory of this relation follows the Introduction. Even though research is still marching
at a brisk pace, both fields have attained by now the degree of maturity that would
warrant the writing of such an exposition.

In the realm of continuum physics, material bodies are realized as continuous
media, and so-called “extensive quantities,” such as mass, momentum and energy, are
monitored through the fields of their densities, which are related by balance laws and
constitutive equations. A self-contained, though skeletal, introduction to this branch
of classical physics is presented in Chapter II. The reader may flesh it out with the
help of a specialized text on the subject.

In its primal formulation, the typical balance law stipulates that the time rate of
change in the amount of an extensive quantity stored inside any subdomain of the
body is balanced by the rate of flux of this quantity through the boundary of the sub-
domain together with the rate of its production inside the subdomain. In the absence
of production, a balanced extensive quantity is conserved. The special feature that
renders continuum physics amenable to analytical treatment is that, under quite nat-
ural assumptions, statements of gross balance, as above, reduce to field equations,
i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular con-
tinuum theories, such as mechanics, thermomechanics, electrodynamics, and so on.
In the context of a continuum theory, constitutive equations encode the material prop-
erties of the medium, for example, heat-conducting viscous fluid, elastic solid, elas-
tic dielectric, etc. The coupling of these constitutive relations with the field equations
gives birth to closed systems of partial differential equations, dubbed “balance laws”
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or “conservation laws,” from which the equilibrium state or motion of the continuous
medium is to be determined. Historically, the vast majority of noteworthy partial dif-
ferential equations were generated through that process. The central thesis of this
book is that the umbilical cord joining continuum physics with the theory of partial
differential equations should not be severed, as it is still carrying nourishment in both
directions.

Systems of balance laws may be elliptic, typically in statics; hyperbolic, in
dynamics, for media with “elastic” response; mixed elliptic-hyperbolic, in statics
or dynamics, when the medium undergoes phase transitions; parabolic or mixed
parabolic-hyperbolic, in the presence of viscosity, heat conductivity or other diffu-
sive mechanisms. Accordingly, the basic notions shall be introduced, in Chapter I, at
a level of generality that would encompass all of the above possibilities. Neverthe-
less, since the subject of this work is hyperbolic conservation laws, the discussion
will eventually focus on such systems, beginning with Chapter III.

The term “homogeneous hyperbolic conservation law” refers to first-order sys-
tems of partial differential equations in divergence form,

(HCL) GH(U)+ Y, 0uGalU) =0,

a=|

that are of hyperbolic type. The state vector U, with values in R", is to be determined
as a function of the spatial variables (xj,...,x,) and time ¢. The given functions H
and Gy,...,G,, are smooth maps from R" to R”". The symbol o, stands for d/dt and
da denotes d/dxq. The notion of hyperbolicity will be specified in Section 3.1.

Solutions to hyperbolic conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which prop-
agate on as shocks. Hence, inevitably, the theory has to deal with. weak solutions.
This difficulty is compounded further by the fact that, in the context of weak so-
lutions, uniqueness is lost. It thus becomes necessary to devise proper criteria for
singling out admissible weak solutions. Continuum physics naturally induces such
admissibility criteria through the Second Law of thermodynamics. These may be in-
corporated in the analytical theory, either directly, by stipulating outright that admis-
sible solutions should satisfy “entropy” inequalities, or indirectly, by equipping the
system with a minute amount of diffusion, which has negligible effect on smooth
solutions but reacts stiffly in the presence of shocks, weeding out those that are
not thermodynamically admissible. The notions of “entropy” and “vanishing dif-
fusion,” which will play a central role throughout the book, will be introduced in
Chapters III and IV.

Chapter V discusses the Cauchy problem and the initial-boundary value problem
for hyperbolic systems of balance laws, in the context of classical solutions. It is
shown that these problems are locally well-posed and the resulting smooth solutions
are stable, even within the broader class of admissible weak solutions, but their life
span is finite, unless there is a dissipative source that thwarts the breaking of waves.
The analysis underscores the stabilizing role of the Second Law of thermodynamics.
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The Cauchy problem in the large may be considered only in the context of weak
solutions. This is still terra incognita for systems of more than one equation in sev-
eral space dimensions, as the analysis is at present facing seemingly insurmountable
obstacles. It is even conceivable that the Cauchy problem is not generally well-posed
in the realm of standard distributional weak solutions, in which case one would have
to resort to the class of weaker, measure-valued solutions (see Chapter XVI). In
such a setting, the hyperbolic system should be perceived as a mere shadow, in the
Platonic sense, of a diffusive system with vanishing viscosity or dispersion. Never-
theless, this book will focus on success stories, namely problems admitting standard
distributional weak solutions. These encompass scalar conservation laws in one or
several space dimensions, systems of hyperbolic conservation laws in a single space
dimension, as well as systems in several space dimensions whenever invariance (ra-
dial symmetry, stationarity, self-similarity, etc.) reduces the number of independent
variables to two.

Chapter VI provides a detailed presentation of the rich and definitive theory of
L™ and BV solutions to the Cauchy problem and the initial-boundary value problem
for scalar conservation laws in several space dimensions.

Beginning with Chapter VII, the focus of the investigation is fixed on systems of
conservation laws in one space dimension. In that setting, the theory has a number
of special features that are of great help to the analyst, so major progress has been
achieved.

Chapter VIII provides a systematic exposition of the properties of shocks. In par-
ticular, various shock admissibility criteria are introduced, compared and contrasted.
Admissible shocks are then combined, in Chapter IX, with another class of particular
solutions, called centered rarefaction waves, to synthesize wave fans that solve the
classical Riemann problem. Solutions of the Riemann problem may in turn be em-
ployed as building blocks for constructing solutions to the Cauchy problem, in the
class BV of functions of bounded variation. Two construction methods based on this
approach will be presented here: the random choice scheme, in Chapter XIII, and a
front tracking algorithm, in Chapter XIV. Uniqueness and stability of these solutions
will also be established.

Chapter XV outlines an alternative construction of BV solutions to the Cauchy
problem, for general strictly hyperbolic systems of conservation laws, by the method
of vanishing viscosity.

The above construction methods generally apply when the initial data have suf-
ficiently small total variation. This restriction seems to be generally necessary be-
cause, in certain systems, when the initial data are “large” even weak solutions to the
Cauchy problem may blow up in finite time. Whether such catastrophes may occur
to solutions of the field equations of continuum physics is at present a major open
problem. For a limited class of systems, which however contains several important
representatives, solutions with large initial data can be constructed by means of the
functional analytic method of compensated compactness. This approach, which rests
on the notions of measure-valued solution and the Young measure, will be outlined in
Chapter XVL
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There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical
to weak solutions; and it is employed for obtaining a very precise description of
regularity and long-time behavior of solutions to scalar conservation laws, in Chapter
X1, as well as to systems of two conservation laws, in Chapter XII.

The final Chapter XVII deals with self-similar solutions in two space dimensions.
It discusses the Riemann Problem for scalar conservation laws as well as problems
of long standing in planar transonic fluid flow that have recently been solved.

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical merits of the reverse
course. Even so, under proper guidance, the book may also serve as a text. With that
in mind, the pace of the proofs is purposely uneven: slow for the basic, elementary
propositions that may provide material for an introductory course; faster for the more
advanced technical results that are addressed to the experienced analyst. Even though
the various parts of this work fit together to form an integral entity, readers may select
a number of independent itineraries through the book. Thus, those principally inter-
ested in the conceptual foundations of the theory of hyperbolic conservation laws, in
connection to continuum physics, need go through Chapters I-V only. Chapter VI,
on the scalar conservation law, may be read virtually independently of the rest. Stu-
dents intending to study solutions as compositions of interacting elementary waves
may begin with Chapters VII-IX and then either continue on to Chapters X-XII or
else pass directly to Chapter XIII and/or Chapter XIV. Similarly, Chapter XV relies
solely on Chapters VII and VIII, while Chapter XVII depends on Chapters III, VII,
VIII and IX. Finally, only Chapter VII is needed as a prerequisite for the functional
analytic approach expounded in Chapter XVI.

Certain topics are perhaps discussed in excessive detail, as they are of special
interest to the author; and a number of results are published here for the first time.
On the other hand, several important aspects of the theory are barely touched upon,
or are only sketched very briefly. They include the newly developed stability theory
of multi-space-dimensional shocks and boundary conditions, the derivation of the
balance laws of continuum physics from the kinetic theory of gases, and the study
of phase transitions. Each one of these areas would warrant the writing of a special-
ized monograph. The most conspicuous absence is a discussion of numerics, which,
beyond its practical applications, also provides valuable insight to the theory. Fortu-
nately, a number of texts on the numerical analysis of hyperbolic conservation laws
have recently appeared and may fill this gap.



A Sketch of the Early History of Hyperbolic
Conservation Laws

The general theory, and even the name itself, of hyperbolic conservation laws
emerged just fifty years ago, and yet the special features of this class of systems
of partial differential equations had been identified long before, in the context of par-
ticular examples arising in mathematical physics. The aim here is to trace the early
seminal works that launched the field and set it on its present course. A number of
relevant classic papers have been collected in Johnson and Chéret [1].

The ensuing exposition will describe how the subject emerged out of fluid dy-
namics, how its early steps were frustrated by the confused state of thermodynamics,
how it was set on a firm footing, and how it finally evolved into a special branch of
the theory of partial differential equations.

This section may be read independently of the rest of the book, as it is essentially
self-contained, but the student will draw extra benefit by revisiting it after getting
acquainted with the current state of the art expounded in the main body of the text.
Accordingly, in order to highlight the connection between past and present, the his-
tory is presented here with the benefit of hindsight: current terminology is freely
used, and symbols and equations drawn from the original sources have been translit-
erated to modern notation.

Since the early history of hyperbolic conservation laws is inextricably inter-
twined with gas dynamics, we begin with a brief review of the theory of ideal gases,
as it stood at the turn of the nineteenth century. Details on this topic are found in the
historical tract by Truesdell [1].

The state of the ideal gas is determined by its density p, pressure p and (absolute)
temperature 6, which are interrelated by the law associated with the names of Boyle,
Gay-Lussac and Mariotte:

(1 p=Rpo,

where R is the universal gas constant. In the place of p, one may equally employ its
inverse u = 1/p, namely the specific volume.

The specific heat at constant pressure or at constant volume, ¢, or ¢y, is the rate
of change in the amount of heat stored in the gas as the temperature varies, while the
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pressure or the specific volume is held fixed. The ratio y = ¢, /¢, is a constant bigger
than one, called the adiabatic exponent.

Barotropic thermodynamic processes, in which p = p(p), may be treated in the
realm of mechanics, with no regard to temperature. The simplest example is an
isothermal process, in which the temperature is held constant, so that, by (1),

) p=dp.

Subtler is the case of an isentropic or adiabatic process,' in which the temperature
and the specific volume vary simultaneously in such a proportion that the amount of

heat stored in any part of the gas remains fixed. As shown by Laplace and by Poisson,
this assumption leads to

(3) p=ap.

The oldest, and still most prominent, paradigm of a hyperbolic system of conser-
vation laws is provided by the Euler equations for barotropic gas flow, which express
the conservation of mass and momentum, relating the velocity field v with the den-
sity field and the pressure field. The pertinent publications by Euler, culminating in
his definitive formulation of hydrodynamics, are collected in Euler [1], which also
contains informative commentary by Truesdell. In addition to the equations that bear
his name, Euler derived what is now called the Bernoulli equation for irrotational
flow, so named because in steady flow it reduces to the celebrated law discovered by
Daniel Bernoulli. We will encounter the aforementioned equations on several occa-
sions in the main body of this book, beginning with Section 3.3.6.

Internal forces in an elastic fluid are transmitted by the hydrostatic pressure,
which is a scalar field. As a result, the Euler equations form a system of conser-
vation laws with distinctive geometric structure. Conservation laws of more generic
type, manifesting the tensorial nature of the flux field, as discussed here in Chapter
I, emerged in the 1820s from the pioneering work of Cauchy [1,2,3,4] on the theory
of elasticity. Nevertheless, as we shall see below, the early work on hyperbolic con-
servation laws dealt almost exclusively with the one-space-dimensional setting, for
which the Euler equations constitute a fully representative example.

In an important memoir on the theory of sound, published in 1808, Poisson [1]
considers the Euler equations and the Bernoulli equation for rectilinear isothermal
flow of an ideal gas, namely

alp +3x(Pv) =0
(4)
a(pv) + ar(PUZ) +a*dp =0,

! The term “adiabatic™ was coined in 1859 by Rankine, who also originated the use of the
symbol y for the adiabatic exponent. However, in the sequel we will employ the newer

terminology “isentropic,” while reserving “adiabatic” for a related but different use; see
Section 2.5.
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1
(5) 31¢+§(3x¢)2+a210gp =0,

where ¢ is the velocity potential, v = d,¢. By eliminating p between (5) and (4),,
he derives a second order equation for ¢ alone:

(6) 079 +2(0:0) (00 0) + (9:0)* 92 —a’d}¢ = 0.

Employing a method of solving differential equations devised by Laplace and by
Legendre, he concludes that any ¢ that satisfies the functional equation

() 0cp = f(x+(a—d:P)r),

for some arbitrary smooth function f, is a particular solution of (6).

In current terminology, one recognizes Poisson’s solution as a simple wave (see
Section 7.6) on which the Riemann invariant (see Section 7.3) v+ alogp is constant,
and thus v satisfies the equation

(8) v+ vdw—adw =0
admitting solutions
9) v=f(x+(a—v)r),

with f an arbitrary smooth function.

Forty years after the publication of Poisson’s paper, the British astronomer
Challis [1] made the observation that (9), with f(x) = — sin( % 7x), yields v = 0 along
the straight line x = —at and v = 1 along the straight line x = —1 — (a — 1)z, which
raises the paradox that v must be simultaneously equal to 0 and 1 at the point (—a, 1)
of intersection of these straight lines. This is the earliest reference to the breakdown
of classical solutions, which pervades the entire theory of hyperbolic conservation
laws.

The issue raised by Challis was addressed almost immediately by Stokes [1], his
colleague at the University of Cambridge. Stokes notes that, according to Poisson’s
solution (9), along each straight line x = ¥ — (a — f(x))t, we have v(x,t) = f(¥) and

f(®)
10 ov(x,1) = ——.
(10) A 6
Thus, unless f is nondecreasing, the wave will break at t = —1/f’(x), where /(%) is

the minimum of f’. He then ponders what would happen after singularities develop
and comes up with an original and bold conjecture. In his own words: “Perhaps the
most natural supposition to make for trial is that a surface of discontinuity is formed,
in passing across which there is an abrupt change of density and velocity.” He seems
highly conscious that this is a far-reaching idea, going well beyond the particular
setting of Poisson’s solution, as he writes: “Although I was led to the subject by
considering the interpretation of the integral (9), the consideration of a discontinuous
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motion is not here introduced in connection with that interpretation, but simply for
its own sake; and I wish the two subjects to be considered as quite distinct.”

Stokes then proceeds to characterize the jump discontinuities that conform to
the governing physical laws of conservation of mass and momentum, which underlie
the Euler equations in the realm of smooth flows. Assuming that density and velocity
jump from (p_,v_) to (p+,v4) across a line of discontinuity propagating with speed
o (i.e., having slope o), he shows that

p+vs —p-v_=0(ps —p-)
(11)

p+vi+alps —pvi—a’p_ =c(pivs —p-v-).

By eliminating ¢ between the above two equations, he gets

(12) p_ps(vy —v ) =a*(py —p-)*.

Thus, Stokes [1] introduces, in the context of the Euler equations (4) for isother-
mal flow, the notion of a shock wave and derives what are now known as the Rankine-
Hugoniot jump conditions (see Section 8.1), which characterize distributional weak
solutions of (4). This paper is one of the cornerstones of the theory of hyperbolic
conservation laws. However, the development of the subject was soon to hit a road-
block.

Stokes’s idea of contemplating flows with jump discontinuities was criticized,
apparently in private, by Sir William Thomson (Lord Kelvin), and later by Lord
Rayleigh, in private correspondence (Rayleigh [1]) as well as in print (Rayleigh [2,
§253]), on the following grounds: they argued that jump discontinuities should not
produce or consume mechanical energy. A calculation shows that this would require

(13) 2p_p; log (E;> =p2—p3,
P+

which is incompatible with p_ # p,.

In order to place the above argument in the present context of the theory of con-
servation laws, one should notice that any smooth solution of the Euler equations (4)
automatically satisfies the conservation law of mechanical energy

(14) o (3pv* +a’plogp) + ok (spv’ +a’pulogp +a*pv) = 0.

In current terminology, $pv® +a’plogp is an entropy for the system (4), with en-
tropy flux pv? +a’pvlogp + a’pv; see Section 7.4. Assuming that mechanical
energy should be conserved, even in the presence of shocks, induces the jump con-
dition

(15)  ipivi +a’pivilogps +a’pivy —Sp_v? —a’p_v_logp_ —a’p_v_

=0 [3p+v} +aPpilogps — 3p_v? —a’p_logp_].
Eliminating o between (11), and (15), and making use of (12), one arrives at (13).



