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Preface for the Second Edition

The authors are very happy to see the second revised edition of this mono-
graph appearing in a joint effort of the Peking University Press and the World
Scientific Publishing Co., Inc., Singapore. The printing of this book in Beijing
greatly increases the availability of the book to readers within China.

The hard work of revising the text and figures was mainly done by Dr.
Wei-mou Zheng. The revisions concern mainly the application of symbolic
dynamics to ordinary differential equations via constructing two-dimensional
symbolic dynamics of the corresponding Poincare maps for the ODEs. I would
like to emphasize once more that the way of getting into two-dimensional maps
and ODEs was paved by Dr. Zheng almost single-handed since the early 1990s.
This approach significantly extends the qualitative study of ODEs by numeri-
cal means under the guidance of topology, as symbolic dynamics is topological
in nature. However, many difficult problems remain unsolved regarding the re-
lation of symbolic dynamics to knot theory and formal language theory. These
problems are only touched briefly in the last chapters with the hope to inspire
further studies. Criticism and feedback from the readers are mostly welcome.

Special thanks go to Ms. Xiao-hong Chen and Mr. Zhao-yuan Yin from
the Peking University Press who have been very patient and helpful during
the yearly long process of preparing the second edition.

Bai-lin Hao
1 August 2014, Beijing



Preface

Symbolic dynamics is a coarse-grained description of dynamics. It has been a
long-studied chapter of the mathematical theory of dynamical systems, but its
abstract formulation has kept away many practitioners of physical sciences and
engineering from appreciating its simplicity, beauty, and power. At the same
time, symbolic dynamics provides almost the only rigorous way to understand
global systematics of periodic and, especially, chaotic motion in dynamical
systems. In a sense, everyone who enters the field of chaotic dynamics should
begin with the study of symbolic dynamics. However, this has not been an
easy job for non-mathematicians to accomplish. On one hand, the method
of symbolic dynamics has been developed to such an extend that it may well
become a practical tool in studying chaotic dynamics, both on computers and
in laboratories. On the other hand, most of the existing literature on symbolic
dynamics is mathematics-oriented. This book is an attempt at partially filling
up this apparent gap by emphasizing the applied aspects of symbolic dynamics
without pretending to mathematical rigor.

No previous knowledge of dynamical systems theory is required in order to
read this book. The mathematics used does not exceed basic calculus taught
at engineering schools. Starting from simple one-dimensional maps, we go
through circle maps and two-dimensional maps to arrive at numerical study
of some ordinary differential equations under the guidance of symbolic dy-
namics. Instead of numbered formal definitions and proofs, the reader will
find many examples and figures which embody the idea and method of sym-
bolic dynamics. We have also included two kinds of computer programs in the
book. A few short BASIC programs, implementing one or another procedure
just described in the text, may help the reader to understand the method
thoroughly. These programs may be considered part of the text or be skipped
at first reading. Some more sophisticated programs written in C language are
listed in the Appendix. These may be easily modified to treat systems not
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studied in the book and are aimed at the research need of some readers.

The book is organized as follows.

Chapter 1 is a brief introduction to the general idea of symbolic dynamics.

Chapter 2 studies symbolic dynamics of unimodal, one-hump map of the
interval, the simplest yet very rich dynamical system. Recent development
of the applied direction of symbolic dynamics, what we call Applied Symbolic
Dynamics', has drawn much inspiration from the unimodal map.

Chapter 3 studies one-dimensional maps of the interval with multiple crit-
ical points or points of discontinuity. These maps occur naturally in many
applications and they are needed in understanding ordinary differential equa-
tions with dissipation, i.e., those equations that allow the existence of strange
attractors.

Chapter 4 is devoted to symbolic dynamics of circle maps as the simplest
model of physical systems with competing frequencies. The symbolic dynamics
of circle maps possesses some specific features absent in interval maps. The
knowledge is of much help in the study of periodically forced systems described
by ordinary differential equations.

Chapter 5 develops symbolic dynamics of two-dimensional maps. A mostly
analytical study will be carried out on some piecewise linear 2D maps, provid-
ing hints and clues to deal with more general maps. Being a major progress
in the last decade, the symbolic dynamics of 2D maps are essential for the
symbolic dynamics study of differential equations as the usual Poincaré maps
are two-dimensional.

Chapter 6 focuses on numerical study of ordinary differential equations
under the guidance of symbolic dynamics. This mostly “experimental”’, at
present time, approach is capable to provide some global understanding of
the system that cannot be reached neither by purely analytical means nor
by numerical methods alone. For example, we are able to list and locate all
short periodic orbits, stable as well as unstable ones, in fairly large region
of the parameter space for the Lorenz model and for the periodically forced
Brusselator.

Chapter 7 provides the complete solution of a counting problem which is
related to but goes beyond symbolic dynamics, namely, the number of periods

! The name was suggested by Ian Percival during his visit to Beijing in 1988.



Preface v

in continuous maps of the interval with multiple critical points. It also contains
partial result for maps with discontinuity.

Symbolic sequences fit naturally into the framework of formal languages.
The well-established machinery of formal language theory is of great help in
the classification of orbital types and their complexity in 1D maps. Many
new results have been obtained in the last few years. Since there has just
appeared a nice book on this topic (Xie [B1996]), we confine ourselves to a
brief summary of this line of study in Chapter 8.

Chapter 9 discusses the relation of symbolic dynamics with another topo-
logical approach to dynamical systems, namely, the study of periodic orbits
as knots and links. Although knots and links are objects in three-dimensional
space, many problems may be posed using 1D maps. Instead of presenting
finished results, this Chapter, we hope, may inspire some new research inter-
est.

There is a quite detailed Table of Contents and an Index, which may help
the reader to see the scope of the book and to look for interested topics.

This book is not a mathematical treatise. However, we hope mathemati-
cians may also find a few new tricks or some interesting applications of their
abstract theory, including some contributions of Chinese scientists that are
not readily available elsewhere.

Some years ago one of the authors published a book entitled Elementary
Symbolic Dynamics and Chaos in Dissipative Systems (Hao [B1989]). So many
new results and a much deeper understanding have been achieved since then
that the present monograph can hardly be considered as an update of the
1989 book. We refer to that book only in a few occasions when something not
directly related to symbolic dynamics is touched.

A few words about the reference convention in this book. References to
the list at the end of the book are given as, e.g., Poincaré [B1899], the capital
B indicating the first part of the References on “Books’, or Xie [1996], address-
ing a paper in the second part “Papers” of the References. A few citations
to sources not included in the References are given in footnotes. No efforts
have been made to clarify the chronology of one or another statement. In a
rapidly expanding and interdisciplinary field like Chaos there have been many

rediscoveries of important facts. It is better to leave these to the historians of
science.
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Our own work on chaos has been partially supported by the Division of
Mathematics and Physics, Academia Sinica (1983-1985), the Chinese Natural
Science Foundation (1986-1988), and the Project on Nonlinear Science (1990
1995). In 1989 Sun Microsystems, Inc., donated a Sun Workstation to the
Nonlinear Dynamics Group at the Institute of Theoretical Physics, Academia
Sinica, Beijing. Wolfram Research, Inc., donated the Sun version of Mathe-
matica 1.0 software. These were great help to our earlier research. Later on
the Local Network of ITP and the State Key Laboratory on Scientific and
Engineering Computation of Academia Sinica provided computing facilities.
We thank all these organizations for their support.

We would also like to acknowledge the inspiring discussion and interaction
with many colleagues and former students over the years. An incomplete list
includes Shi-gang Chen, Ming-zhou Ding, Hai-ping Fang, Jun-xian Liu, Li-sha
Lu, Shou-li Peng, Zuo-bin Wu, Fa-gen Xie, Hui-ming Xie, and Wan-zhen Zeng.

The text was typeset by the authors using INTEX of Leslie Lamport with
indispensable help from the staff of World Scientific Publishing Co. Pte. Ltd.
In particular, we would like to thank Dr. K. K. Phua, the Editor-in-Chief,
and Dr. Lock-Yee Wong, the editor, for their patience and advice.

Bai-lin Hao and Wei-mou Zheng
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