DAIRY MICROBIOLOGY

FOSTER
NELSON
SPECK
DOFTSCH
OLSON

Dairy Microbiology

EDWIN M. FOSTER, Ph.D.

Professor of Bacteriology, University of Wisconsin

F. EUGENE NELSON, Ph.D.

Professor of Dairy Bacteriology, Iowa State College

MARVIN L. SPECK, Ph.D.

Professor of Dairy Bacteriology, North Carolina State College

RAYMOND N. DOETSCH, Ph.D.

Associate Professor of Bacteriology, University of Maryland

JOSEPH C. OLSON, Jr., Ph.D.

Professor of Dairy Bacteriology, University of Minnesota

1957

Prentice - Hall, Inc.

ENGLEWOOD CLIFFS, NEW JERSEY

© Copyright, 1957, by PRENTICE-HALL, INC. Englewood Cliffs, N. J.

ALL RIGHTS RESERVED. NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY MIMEOGRAPH OR ANY OTHER MEANS, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHERS.

LIBRARY OF CONGRESS CATALOG CARD No.: 57-6457 Dairy Microbiology was prepared to serve as a useful source of information for the many persons interested in the microbiological quality of dairy products. It should make an excellent working reference for plant operators, fieldmen, laboratory personnel, sanitarians, and others. It also is intended for use by college students who have had an introductory course in general bacteriology.

As its title indicates, the book deals with the relation of microbiology to the dairy industry. It is an interpretative work, one that stresses the broad generalizations that can be drawn from information in the literature. Citations to original papers are used sparingly except for relatively recent information, the source of which might be of interest to the reader.

The first six chapters emphasize the application of well-known facts in the science of microbiology to the various pertinent phases of the dairy industry. The main dairy organisms are described, first according to the classical taxonomic arrangement and then according to physiological groupings in which the various organisms that produce the same changes in milk are placed together. Next, the authors deal with the factors affecting the growth of microorganisms, stressing the means of preventing growth where it is unwanted and of stimulating it where it is desired. They discuss in considerable detail the physical and chemical methods of killing microorganisms in milk and on dairy equipment. General directions for examining dairy products for microorganisms are given, with explanations of underlying principles. The limitations, advantages, and disadvantages of the methods used are discussed. Finally the sources of microorganisms in milk are considered, and emphasis is placed upon means of producing milk of the best possible bacteriological quality.

Chapters 7 to 14 deal with the microbiology of specific dairy products—market milk, fermented milks, cheese, butter, and evaporated, condensed, dried, or frozen products. Sufficient description of the method of manufacture employed for each product is given to permit the reader to understand how microorganisms are affected by the various processes involved. A separate chapter is devoted to a consideration of cultures or starters used for fermented products. The book's final chapter deals with the principles and problems of dairy plant waste disposal and with the utilization of dairy by-products by fermentation.

Dairy Microbiology is the result of the concerted efforts of five authors. Each chapter was prepared by the person best qualified to write it,

but was reviewed by all the others. The names of the authors are not associated with the individual chapters they have written, for the five authors prefer to consider each chapter, as well as the entire book, as a group project for which they are all equally responsible. The reader should know that the order of the names below, and on the title page, has no special significance.

The authors are indebted to many of their friends and colleagues for help. They are especially appreciative of the cooperation of Mrs. A. D. Orla-Jensen, who kindly placed at their disposal a number of photographs of microorganisms from the collection of the late Dr. S. Orla-Jensen. Sources of other illustrative materials are acknowledged throughout the book.

Special thanks go to the following persons who read sections of the manuscript and pointed out errors and areas for improvement: Dr. Wendell Arbuckle, University of Maryland; Dr. S. T. Coulter, University of Minnesota; Dr. W. C. Frazier, Dr. W. V. Price, and Dr. G. A. Rohlich, University of Wisconsin; Mr. Joe Greenspan, Consolidated Products Co.; Dr. W. L. Mallmann, Michigan State University; Mr. F. J. McKee, Kraft Foods Co.; Dr. J. W. Pette, Nederlands Instituut voor Zuivelonderzoek, Hoorn, Nederlands; Dr. F. R. Smith, Pet Milk Co.; Dr. R. P. Tittsler and Dr. George Holm, United States Department of Agriculture; and Mr. Donald Williams, International Association of Ice Cream Manufacturers.

Finally, the authors are indebted to those who reviewed the entire manuscript and gave the benefit of their criticism and advice. These are Dr. F. W. Barber, National Dairy Research Laboratories; Dr. J. Frank Cone, Pennsylvania State University; Dr. P. R. Elliker, Oregon State College; and Dr. M. E. Morgan, Storrs (Connecticut) Agricultural Experiment Station.

E. M. Foster M. L. Speck F. E. Nelson R. N. Doetsch J. C. Olson, Jr.

CONTENTS

1	An introduction to dairy microbiology 1				
	CLASSIFICATION OF MICROORGANISMS 3 SOME BIOLOGICAL PROPERTIES OF MICROORGANISMS 4				
2	The microorganisms of milk and dairy products 8				
	Lactobacteriaceae 9 STREPTOCOCCUS 10 LEUCONOSTOC 16 LACTOBACILLUS 17 MICROBACTERIUM 20 PROPIONIBACTERIUM 22				
	Micrococcaceae 23				
	Enterobacteriaceae 25 ESCHERICHIA-AEROBACTER 26 PROTEUS 27 SALMONELLA 27				
	Pseudomonadaceae 27 PSEUDOMONAS 28				
	Bacillaceae 29 BACILLUS 30 CLOSTRIDIUM 31				
	Miscellaneous Bacteria 32				
	Bacterial Viruses and Rickettsiae 34 Yeasts 36 Molds 38				
	Associative Action among Microorganisms 43 Dairy Microorganisms as Physiological Groups 45				

3 Methods of controlling growth of microorganisms 55

MICROBIAL GROWTH 56
THE CONCEPT OF MICROENVIRONMENT 58
WATER RELATIONSHIPS 59
NUTRIENT REQUIREMENTS 61
PH 64
OXIDATION-REDUCTION POTENTIAL 68
OXYGEN RELATIONSHIPS 70
TEMPERATURE 72
ANTIBIOTICS 75
SULFONAMIDES 78.
THE GERMICIDAL PROPERTY OF MILK 78
QUATERNARY AMMONIUM COMPOUNDS 79
SALT 81
FATTY ACIDS 81
MISCELLANEOUS AGENTS 82

4 Destruction of microorganisms by physical and chemical agents 85

Destruction of Microorganisms by Heat 86

THERMAL DEATH TIME 87

FACTORS WHICH INFLUENCE HEAT RESISTANCE 88

PASTEURIZATION 92

STERILIZATION 95

Destruction by Radiation 97
IONIZING RADIATION 97

ONIZING RADIATION 97

DESTRUCTION OF BACTERIA IN MILK BY RADIATION 99

Effects of Sonic Energy, Electricity, and Pressure 99 SOUND 99

PRESSURE 101

Effects of Surface Forces 102

Destruction by Chemicals 103

DEFINITIONS 103
ACIDS 104
ALKALIES 104
METALS AND THEIR SALTS 105
HYDROGEN PEROXIDE 106

CONTENTS

HALOGENS 107
QUATERNARY AMMONIUM COMPOUNDS 109

Cleaning and sanitization 110

CLEANING 110

SANITIZATION 111

Miscellaneous Methods for Removal of Microorganisms 111
GRAVITY 111
CENTRIFUGAL FORCE 112
FILTRATION 112

Microbiological methods of examining dairy products 115

Bacterial Samples 117

Quantitative Methods for Total Bacteria 118

THE STANDARD PLATE COUNT 118

THE DIRECT MICROSCOPIC COUNT 123

THE METHYLENE BLUE REDUCTION TEST 128

THE RESAZURIN REDUCTION TEST 131

Quantitative Tests for Specific Types of Microorganisms 133

THERMODURIC BACTERIA 133
THERMOPHILIC BACTERIA 134
PSYCHROPHILIC MICROORGANISMS 136
COLIFORM BACTERIA 137
LIPOLYTIC BACTERIA 140
PROTEOLYTIC BACTERIA 141
ACID-PRODUCING BACTERIA 141
YEAST AND MOLD COUNTS 143
MOLD MYCELIA COUNT 144

Qualitative Tests
for Certain Groups of Microorganisms 145

MASTITIS BACTERIA 145

BRUCELLA RING TEST 149

BACTERIOPHAGE 150

Qualitative Tests for Inhibitory Materials in Milk 152

6	Microbiology	of milk	on	the	producing farm	156
---	--------------	---------	----	-----	----------------	-----

Contamination from the Cow 157

THE INTERIOR OF THE UDDER 157

BACTERIA IN ASEPTICALLY DRAWN MILK 158

THE COW AS A POSSIBLE SOURCE OF PATHOGENS 160

THE EXTERIOR OF THE UDDER 162

THE COAT OF THE COW 163

The Role of Milking Utensils in Milk Sanitation 164

CLEANING METAL MILKING UTENSILS 165

SANITIZATION OF MILKING UTENSILS 166

DETERGENT-SANITIZER TREATMENT OF UTENSILS 170

CLEANING AND SANITIZATION OF MILKING MACHINES 171

PERMANENT PIPELINES 174

Bacteria from Miscellaneous Sources 177 Cooling of Milk 179

Microbiology of market milk and related products 188

Government Control of Milk Supplies 188

PRINCIPLES OF EFFECTIVE CONTROL 189

FEDERAL MILK CONTROL AGENCIES 190

STATE MILK CONTROL AGENCIES 191

MUNICIPAL MILK CONTROL 191

ORDINANCES 191

GRADE A MILK PRODUCTS 192

Industry Quality Control Programs 195

The Procurement of Milk 196

Processing Market Milk and Cream 196 CREAM 201

CHOCOLATE MILK 202

CLEANING AND SANITIZATION OF EQUIPMENT 203
CLEANED-IN-PLACE PIPELINES 203

Bacteriological Problems of Market Milk Products 205

EXCESSIVE BACTERIAL COUNTS IN RAW MILK 205

THE PROBLEM OF THERMODURIC BACTERIA 208

THE PROBLEM OF THERMOPHILIC BACTERIA 217

THE PROBLEM OF PSYCHROPHILIC BACTERIA 221

The Spread of Disease Through Milk 227

CONTENTS xi

8 Microbiology of condensed, concentrated, and evaporated milk 232

Bulk Condensed Milk 232

THE MILK SUPPLY 233
PROCESSING 233

KEEPING QUALITY 234
Concentrated Milks 235

Evaporated Milk 237

RAW MILK SUPPLY 237

INFLUENCE OF MANUFACTURING PROCESSES
UPON MICROORGANISMS 239

SPOILAGE 242

Concentrated Sour Milk and Whey 244

9 Microbiology of sweetened condensed and dry milk products 247

Sweetened Condensed Milks 247
INSPECTION OF THE RAW MILE

INSPECTION OF THE RAW MILK SUPPLY 248
PROCESSING 248
INSPECTION OF THE FINISHED PRODUCTS 252
DEFECTS CAUSED BY MICROORGANISMS 253

Dry Milks 254

INSPECTION OF THE RAW MILK SUPPLY 255
PROCESSING 256
INSPECTION OF THE FINISHED PRODUCTS 260
RECONSTITUTED DRY MILK 262
BACTERIAL STANDARDS 263

Microbiology of ice cream and related frozen products 266

MICROBIOLOGY OF ICE CREAM INGREDIENTS 267
PROCESSING ICE CREAM MIX 270
INSPECTION OF THE FINISHED PRODUCT 279
RECONTAMINATION BY DISPENSING 282
DISEASE TRANSMISSION BY ICE CREAM 282

Microbiology of lactic cultures 287

LACTIC ACID PRODUCTION 288
CITRATE FERMENTATION 289
SYMBIOTIC RELATIONSHIPS 291
CARRYING OF CULTURES 293

Judging Culture Quality 299

Culture Defects 302

INSUFFICIENT DEVELOPMENT OF ACIDITY 302
INSUFFICIENT FLAVOR DEVELOPMENT 308
HARD AND LUMPY CURD 309
HIGH ACIDITY 309
WHEYING OFF 310
ROPINESS 310
GASSINESS 311
BITTERNESS 312
MALTINESS 312
METALLIC OR PUCKERY FLAVOR 312
GREEN OR GREEN-APPLE FLAVOR 312

Intermediate Cultures 313 Sources and Types of Commercial Cultures 314

12 Microbiology of fermented milks 318

Cultured Buttermilk 319

ORGANISMS IN THE CULTURE 321

THE MILK AND ITS HEAT TREATMENT 321

STAGE OF ACTIVITY OF BULK STARTER 321

INCUBATION TEMPERATURE 322

THE CORRECT STAGE

OF ACID DEVELOPMENT IN THE BUTTERMILK 322

CARE IN CHILLING AND BOTTLING 323

DEFECTS 323

Cultured Sour Cream 324
Bulgarian Buttermilk 324
Acidophilus Milk 325

PREPARATION OF ACIDOPHILUS MILK 326

Yogurt 327

MANUFACTURE OF YOGURT 327 ORGANISMS IN YOGURT 328 CARRYING THE MOTHER CULTURE 329
DEFECTS OF YOGURT 330

Kefir 331

Kumiss 331

Taette 332

Skyr 332

Fermented Milks as Carriers of Pathogenic Microorganisms 332

13 Microbiology of cheese 334

The Essential Steps in Cheese Making 336

PREPARING AND INOCULATING THE MILK WITH LACTIC ACID BACTERIA 336

CURDLING THE MILK 338

SHRINKING THE CURD AND PRESSING IT INTO FORMS 340

SALTING 342

RIPENING 342

Preservation of Cheese 349

Spoilage of Cheese 350

MOLD 350

GAS FORMATION 352

RIND ROT 354

MISCELLANEOUS FLAVOR DEFECTS 354

COLOR DEFECTS 354

Examples of the Important Groups of Cheese 354

Unripened Natural Cheeses 355

Cottage Cheese 355

manufacture 355

DEFECTS 357

Cream and Neufchâtel Cheeses 360

Hard Grating Cheeses 361

Hard Cheeses 362

Cheddar Cheese 362

MANUFACTURE 362

CHANGES DURING MANUFACTURE 366

CHANGES DURING RIPENING 367

DEFECTS 371

Provolone and Caciocavallo Siciliano 372

Swiss Cheese 372

MANUFACTURE 373

CHANGES DURING MANUFACTURE 375

CHANGES IN THE PRESS 378

CHANGES DURING RIPENING 379

Edam and Gouda 385

Edam and Gouda 385 Semi-Soft Cheeses 385 Blue Cheese 386

MANUFACTURE 387
CHANGES DURING MANUFACTURE 389
CHANGES DURING RIPENING 389
DEFECTS 392
CHEESE MADE WITH WHITE MUTANTS
OF PENICILLIUM ROOUEFORTI 393

Gammelost 393

Brick Cheese 394

MANUFACTURE 395
CHANGES DURING MANUFACTURE 395
CHANGES DURING RIPENING 396
DEFECTS 397

Limburger Cheese 398

MANUFACTURE 398

CHANGES DURING MANUFACTURE 398

CHANGES DURING RIPENING 399

DEFECTS 400

Soft Ripened Cheeses 400

Camembert 400

MANUFACTURE 400
CHANGES DURING MANUFACTURE 402
CHANGES DURING RIPENING 402
DEFECTS 404

Process Cheese and Related Products 406

Transmission of Diseases Through Cheese 408

14 Microbiology of cream and butter 414

TYPES OF BUTTER MADE 417

Procurement of Cream and Milk 418

CONTENTS

Grading Milk and Cream 418
ROUTINE METHODS OF GRADING 419

SPECIAL METHODS APPLIED TO CREAM 420

Factors Influencing the Quality of Cream for Butter Making and Their Control 422

FACILITIES FOR CARE OF CREAM ON THE FARM 425
CARE OF EQUIPMENT 425
COOLING 426
OTHER FACTORS 426

Effect of Processing and Subsequent Handling on the Microflora of Butter 427

NEUTRALIZATION 427

PASTEURIZATION 427

EFFECT OF EQUIPMENT 430

USE OF BUTTER CULTURES 431

EFFECT OF CHURNING 435

EFFECT OF WORKING AND PRINTING 436

TEMPERATURE OF STORAGE 441

MISCELLANEOUS FACTORS 442

Butter Defects 442

surface taint, putrid, cheesy 443
rancidity and fruitiness 445
malty defect 446
skunk-like odor 447
bacterial discoloration of butter 447
surface discoloration of butter due to molds and yeasts 448

Analysis of Butter for Special Purposes 450

MOLD AND YEAST COUNTS 451

KEEPING QUALITY TESTS 451

THE COLIFORM TEST APPLIED TO BUTTER 452

PROTEOLYTIC AND LIPOLYTIC COUNTS 453

Spread of Disease Through Butter 454

Dairy plant waste disposal and utilization of by-products 459

Dairy Plant Waste Disposal 459

EFFECT OF ADDING DAIRY WASTES TO A BODY OF WATER 461
PREVENTING WASTE AT THE DAIRY PLANT 463
TREATMENT OF DAIRY WASTES 467

xvi CONTENTS

REGULATORY AGENCIES IN POLLUTION CONTROL 468

The Use of Whey in Industrial Fermentations 470
LACTIC ACID PRODUCTION FROM WHEY 471
ALCOHOLIC FERMENTATION OF WHEY
AND YEAST DELACTOSED WHEY 473
SYNTHESIS OF VITAMINS 475

INDEX 479

An introduction to dairy microbiology

The dairy industry provides an excellent example of an area in which bacteria, yeasts, molds, viruses, and occasionally rickettsiae are very important in determining the quality of the final products. In this industry the control and destruction of undesirable microorganisms as well as their purposeful introduction and utilization are problems which demand much attention. The nutritional qualities of milk and milk products make them desirable foods for humans and young animals. The same nutritional values also permit growth of many microorganisms, some of which cause undesirable changes. Milk is a secretory product of animal origin, and its sanitary qualities are influenced by many factors in the course of its production, processing, and delivery to the consumer. This chapter is a brief review of principles upon which the application of microbiology to the dairy industry is based.

An example of a segment of the dairy industry that is dependent to a large extent on desirable enzymatic changes caused by microorganisms is cheese manufacturing. The flavors and the physical characteristics of cheese are largely ascribed to the alteration of milk constituents by various species acting simultaneously or sequentially. Only a few bacterial and mold species are added deliberately to cheese milk or to the curd during the manufacturing process. Doubtless others would be used if it were known how and when to use them in order to initiate desirable reactions. Probably much of the microbial activity that takes place during cheese ripening is due to species that enter the milk by chance at various points in the manufacturing process. Much remains to be learned about the biological and physico-chemical factors that govern the growth of the mixed populations found in cheese. Ultimately, new techniques will be developed to secure accurate data on these points.

The taste and aroma of good butter are pleasing to most consumers. At present, flavor is the greatest competitive asset of butter. Starter cultures, which are mixed bacterial cultures selected for acid- and flavor-producing ability, are important in the manufacture of some fine flavored butter. The conditions under which optimum flavor develops and the relationships between species are fairly well known, and there is no doubt that the changes brought about by butter starter cultures are desirable.

Yogurt, sour cream, and buttermilk are examples of fermented milks made by the addition of various microorganisms to concentrated milk, cream, and skimmilk, respectively. Each product has a characteristic flora that is responsible, in part, for its distinctive flavor and physical appearance. It is now possible to manufacture these fermented milks with uniform properties from day to day by using starter cultures specially selected for their desirable flavor and acid-producing ability.

The conversion by microorganisms of certain of the constituents of milk into economically valuable products like vitamins, solvents, and food adjuncts can now be done on an industrial scale. There is essentially no limit, except the ingenuity of the experimenter, to the variety of substances which may be obtained in this way. On the other hand, milk constituents which have no economic value, or which are inadvertently wasted, must be changed to stably oxidized and non-obnoxious substances before being discharged into streams or lakes. Here again microbial activity is in large measure responsible for the desired changes in the organic constituents of dairy wastes in the process of sewage treatment.

Microorganisms are undesirable in milk and its products if they are capable of causing deterioration in flavor or physical appearance, if they are able to produce disease, or if they indicate careless or unsanitary handling of the product. Off-flavors produced by microorganisms are not only undesirable per se, but indicate that there has been opportunity for growth. It is important that the dairy microbiologist understand the factors which influence the deterioration of dairy products and the methods by which this deterioration can be prevented. Souring of milk or cream is undesirable under most circumstances, but souring (production of lactic acid) is essential for the manufacture of cheese or cultured milk. Discolorations, sliminess, ropiness, putrefaction, rancidity, gassiness, and many other defects are caused by various microorganisms growing in dairy products.

Milk and some milk products occasionally have been found to be carriers of microorganisms that cause disease. Fortunately these agents of disease can be controlled, and at present only a few outbreaks are reported each year, these usually being due to the consumption of unpasteurized or grossly contaminated products. As new processes and products are developed by the dairy technologist, they must be carefully checked to insure that they are safe from the public health point of view.

Many of the ordinances and other regulations under which milk and milk products are produced and handled specify quantitative, and in some instances qualitative, microbiological standards. These standards are the