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PREFACE

Linear algebra is a fantastic subject. On the one hand it is clean and beautiful. If
you have three vectors in 12-dimensional space, you can almost see them. A com-
bination like the first plus the second minus twice the third is harder to visualize,
but may still be possible. I don’t know if anyone can see all such combinations,
but somehow (in this course) you begin to do it. Certainly the combinations of
those three vectors will not fill the whole 12-dimensional space. (I'm afraid the
course has already begun; usually you get to read the preface for free!) What
those combinations do fill out is something important—and not just to pure
mathematicians.

That is the other side of linear algebra. It is needed and used. Ten years ago it
was taught too abstractly, and the crucial importance of the subject was missed.
Such a situation could not continue. Linear algebra has become as basic and as
applicable as calculus, and fortunately it is easier. The curriculum had to change,
and this is now widely accepted as an essential sophomore or junior course—a
requirement for engineering and science, and a central part of mathematics.

The goal of this book is to show both sides—the beauty of linear algebra, and
its value. The effort is not all concentrated on theorems and proofs, although the
mathematics is there. The emphasis is less on rigor, and much more on under-
standing. I try to explain rather than to deduce. In the book, and also in class,
ideas come with examples. Once you work with subspaces, you understand them.
The ability to reason mathematically will develop, if it is given enough to do. And
the essential ideas of linear algebra are not too hard.

I would like to say clearly that this is a book about mathematics. It is not so
totally watered down that all the purpose is drained out. I do not believe that
students or instructors want an empty course; three hours a week can achieve
something worthwhile, provided the textbook helps. I hope and believe that you
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will see, behind the informal and personal style of this book, that it is written to
teach real mathematics. There will be sections you omit, and there might be ex-
planations you don’t need,t but you cannot miss the underlying force of this sub-
ject. It moves simply and naturally from a line or a plane to the n-dimensional
space R" That step is mathematics at its best, and every student can take it.

One question is hard to postpone: How should the course start? Most students
come to the first class already knowing something about linear equations.-Still T
believe that we must begin with n equations in n unknowns, Ax = b, and with the
simplest and most useful method of solution—Gaussian elimination (not deter-
minants!). It is a perfect introduction to matrix multiplication. And fortunately,
even though the method is so straightforward, there are insights that are central
to its understanding and new to almost every student. One is to recognize, as
elimination goes from the original matrix A to an upper triangular U, that A4 is
being factored into two triangular matrices: A = LU. That observation is not deep,
and it is easy to verify, but it is tremendously important in practice. For me this
is one indicator of a serious course, a dividing line from a presentation that deals
only with row operations or 4~ 1.

Another question is to find the right speed. If matrix calculations are familiar,
then Chapter I must not be too slow. It is Chapter 2 that demands more work, and
that means work of a different kind—not the crunching of numbers which a com-
puter can do, but an understanding of Ax = b which starts with elimination and
goes deeper. The class has to know that the gears have changed; ideas are coming.
Instead of individual vectors, we need vector spaces. I am convinced that the four
fundamental subspaces—the column space of 4, its row space, and the nullspaces
of A and A" —are the most effective way to illustrate linear dependence and in-
dependence, and to understand “basis” and “dimension” and “rank.” Those are
developed gradually but steadily, and they generate examples in a completely
natural way. They are also the key to Ax = b.

May I take one example, to show how an idea can be seen in different ways? It
is the fundamental step of multiplying A times x, a matrix times a vector. At one
level Ax is just numbers. At the next level it is a combination of the columns of
A. At a third level it is a vector in the column space. (We are seeing a space of
vectors, containing all combinations and not only this one.) To an algebraist, A
represents a linear transformation and Ax is the result of applying it to x. All
four are important, and the book must make the connections.

Chapters 1-5 are really the heart of a course in linear algebra. They contain a
large number of applications to physics, engineering, probability and statistics,
economics, and biology. Those are not tacked on at the end; they are part of the
mathematics. Networks and graphs are a terrific source of rectangular matrices,
essential in engineering and computer science and also perfect examples for
teaching. What mathematics can do, and what linear algebra does so well, is to
see patterns that are partly hidden in the applications. This is a book that allows

T My favorite proof comes in a book by Ring Lardner: “ ‘Shut up,’ he explained.”
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pure mathematicians to teach applied mathematics. 1 believe the faculty can do the
moving, and teach what students need. The effort is absolutely rewarding.

If you know earlier editions of the book, you will see changes. Section 1.1 is famil-
iar but not 1.2. Certainly the spirit has not changed; this course is alive because
its subject is. By teaching it constantly, I found a whole series of improvements—
in the organization and the exercises (hundreds are new, over a very wide range),
and also in the content. Most of these improvements will be visible only in the
day-by-day effort of teaching and learning this subject—when the right explana-
tion or the right exercise makes the difference. I mention two changes that are
visible in the table of contents: Linear transformations are integrated into the text,
and there is a new (and optional) section on the Fast Fourier Transform. That is
perhaps the outstanding algorithm in modern mathematics, and it has revolution-
ized digital processing. It is nothing more than a fast way of multiplying by a cer-
tain matrix! You may only know (as I did) that the idea exists and is important.
It is a pleasure to discover how it fits into linear algebra (and introduces complex
numbers).

This is a first course in linear algebra. The theory is motivated, and reinforced,
by genuine applications. At the same time, the goal is understanding—and the
subject is well established. After Chapter 2 reaches beyond elimination and Al
to the idea of a vector space, Chapter 3 concentrates on orthogonality. Geomet-
rically, that is understood before the first lecture. Algebraically, the steps are fa-
miliar but crucial—to know when vectors are perpendicular, or which subspaces
are orthogonal, or how to project onto a subspace, or how to construct an ortho-
normal basis. Do not underestimate that chapter. Then Chapter 4 presents deter-
minants, the key link between Ax = b and Ax = Ax. They give a test for invertibility
which picks out the eigenvalues. That introduces the last big step in the course.

Chapter 5 puts diagonalization ahead of the Jordan form. The eigenvalues and
eigenvectors take us directly from a matrix 4 to its powers A*. They solve equa-
tions that evolve in time—dynamic problems, in contrast to the static problem
Ax = b. They also carry information which is not obvious from the matrix itself—a
Markov matrix has 4,,, = 1, an orthogonal matrix has all |4| = 1, and a symmetric
matrix has real eigenvalues. If your course reaches the beginning of Chapter 6,
the connections between eigenvalues and pivots and determinants of symmetric
matrices tie the whole subject together. (The last section of each chapter is optional.)
Then Chapter 7 gives more concentrated attention to numerical linear algebra,
which has become the foundation of scientific computing. And I believe that even
a brief look at Chapter 8 allows a worthwhile but relaxed introduction to linear
programming—my class is happy because it comes at the end, without examination.

I would like to mention the Manual for Instructors, and another book. The
manual contains solutions to all exercises (including the Review Exercises at the
ends of Chapters 1-5), and also a collection of ideas and suggestions about applied
linear algebra. I hope instructors will request a copy from the publisher (HBJ
College Department, 7555 Caldwell Avenue, Chicago IL 60648). I also hope that
readers of this book will go forward to the next one. That is called Introduction
to Applied Mathematics, and it combines linear algebra with differential equa-
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tions into a text for modern applied mathematics and engineering mathematics. It
includes Fourier analysis, complex variables, partial differential equations, nu-
merical methods, and optimization—but the starting point is linear algebra. It is
published by Wellesley-Cambridge Press (Box 157, Wellesley MA 02181) and the
response has been tremendous—many departments have wanted a renewal of that
course, to teach what is most needed.

This book, like that next one, aims to recognize what the computer can do (with-
out being dominated by it). Solving a problem no longer means writing down an
infinite series, or finding a formula like Cramer’s rule, but constructing an effec-
tive algorithm. That needs good ideas: mathematics survives! The algebra stays
clear and simple and stable. For elimination, the operation count in Chapter 1
has also a second purpose—to reinforce a detailed grasp of the n by n case, by
actually counting the steps. But I do not do everything in class. The text should
supplement as well as summarize the lectures.

In short, a book is needed that will permit the applications to be taught suc-
cessfully, in combination with the underlying mathematics. That is the book I
have tried to write.

In closing, this is a special opportunity for me to say thank you. I am extremely
grateful to readers who have liked the book, and have seen what it stands for.
Many have written with ideas and encouragement, and I mention only five names:
Dan Drucker, Vince Giambalvo, Steve Kleiman, Beresford Parlett, and Jim
Simmonds. Behind them is an army of friends and critics that I am proud to have.
This third edition has been made better by what they have taught—to students
and to the author. It was a very great pleasure to work with Sophia Koulouras,
who typed the manuscript, and Michael Michaud, who designed the book and
the cover. And above all, my gratitude goes to my wife and children and parents.
The book is theirs too, and so is the spirit behind it—which in the end is everything.
May I rededicate this book to my mother and father, who gave so much to it:
Thank you both.

GILBERT STRANG
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MATRICES AND
GAUSSIAN ELIMINATION

INTRODUCTION W 1.1

The central problem of linear algebra is the solution of linear equations. The most
important case, and the simplest, is when the number of unknowns equals the
number of equations. Therefore we begin with this basic problem: n equations in
n unknowns.

There are two well-established ways to solve linear equations. One is the method
of elimination, in which multiples of the first equation are subtracted from the
other equations—so as to remove the first unknown from those equations. This
leaves a smaller system, of n — 1 equations in n — 1 unknowns. The process is
repeated until there is only one equation and one unknown, which can be solved
immediately. Then it is not hard to go backward, and find the other unknowns in
reverse order; we shall work out an example in a moment. A second and more
sophisticated way introduces the idea of determinants. There is an exact formula
called Cramer’s rule, which gives the solution (the correct values of the unknowns)
as a ratio of two n by n determinants. From the examples in a textbook it is not
obvious which way is better (n = 3 or n = 4 is about the upper limit on the patience
of a reasonable human being).

In fact, the more sophisticated formula involving determinants is a disaster in
practice, and elimination is the algorithm that is constantly used to solve large
systems of equations. Our first goal is to understand this algorithm. It is generally
called Gaussian elimination.

The idea is deceptively simple, and in some form it may already be familiar to
the reader. But there are four aspects that lie deeper than the simple mechanics
of elimination. Together with the algorithm itself, we want to explain them in this
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chapter. They are:

(1) The geometry of linear equations. It is not easy to visualize a 10-dimen-
sional plane in 11-dimensional space. It is harder to see eleven of those planes
intersecting at a single point in that space—but somehow it is almost possible.
With three planes in three dimensions it can certainly be done. Then linear algebra
moves the problem into four dimensions, or eleven dimensions, where the intuition
has to imagine the geometry (and gets it right).

(2) The interpretation of elimination as a factorization of the coefficient ma-
trix. We shall introduce matrix notation for the system of n equations, writing the
unknowns as a vector x and the equations in the matrix shorthand Ax = b. Then
elimination amounts to factoring A into a product LU, of a lower triangular matrix
L and an upper triangular matrix U.

First we have to introduce matrices and vectors in a systematic way, as well as
the rules for their multiplication. We also define the transpose A™ and the inverse
A~! of a matrix A.

(3) In most cases elimination goes forward without difficulties. In some excep-
tional cases it will break down—cither because the equations were written in the
wrong order, which is easily fixed by exchanging them, or else because the equa-
tions fail to have a unique solution. In the latter case there may be no solution,
or infinitely many. We want to understand how, at the time of breakdown, the
elimination process identifies each of these possibilities.

(4) It is essential to have a rough count of the number of operations required
to solve a system by elimination. The expense in computing often determines the
accuracy in the model. The computer can do millions of operations, but not very
many trillions. And already after a million steps, roundoff error can be significant.
(Some problems are sensitive; others are not.) Without trying for full detail, we
want to see what systems arise in practice and how they are actually solved.

The final result of this chapter will be an elimination algorithm which is about
as efficient as possible. It is essentially the algorithm that is in constant use in a
tremendous variety of applications. And at the same time, understanding it in
terms of matrices—the coefficient matrix, the matrices that carry out an elimina-
tion step or an exchange of rows, and the final triangular factors L and U—is an
essential foundation for the theory.
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THE GEOMETRY OF LINEAR EQUATIONS W 1.2

The way to understand this subject is by example. We begin with two extremely
humble equations, recognizing that you could solve them without a course in
linear algebra. Nevertheless I hope you will give Gauss a chance:

2x —y=1
x+y=>35.

There are two ways to look at that system, and our main point is to see them both.

The first approach concentrates on the separate equations, in other words on
the rows. That is the most familiar, and in two dimensions we can do it quickly.
The equation 2x — y = 1 is represented by a straight line in the x-y plane. The
line goes through the points x =1, y=1 and x =3, y =0 (and also through
(0, —1) and (2, 3) and all intermediate points). The second equation x +y =135
produces a second line (Fig. 1.1a). Its slope is dy/dx = —1 and it crosses the first
line at the solution. The point of intersection is the only point on both lines, and
therefore it is the only solution to both equations. It has the coordinates x = 2
and y = 3—which will soon be found by a systematic elimination.

The second approach is not so familiar. It looks at the columns of the linear
system. The two separate equations are really one vector equation

. 2 o e Lilic o}l
1| s
The problem is to find the combination of the column vectors on the left side which

produces the vector on the right side. Those two-dimensional vectors are repre-
sented by the bold lines in Fig. 1.1b. The unknowns are the numbers x and y which

,
> <

A a 5)_2(columnl)
>~/ 7 43 (column 2)
EaY

(x,y)=(@2,3) i \

(5,0) LD 2,1

» X » X
01y &0 N
/

x+y=5

2x—y=1
T (@) (b)

Fig. 1.1. The geometry by rows and by columns.
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multiply the column vectors. The whole idea can be seen in that figure, where 2
times column 1 is added to 3 times column 2. Geometrically this produces a famous
parallelogram. Algebraically it produces the correct vector [1], on the right side of
our equations. The column picture confirms that the solution is x = 2, y = 3.

More time could be spent on that example, but I would rather move forward to
n = 3. Three equations are still manageable, and they have much more variety. As
a specific example, consider

2u+ v+ w= 5
4u — 6v = -2 (1)
—2u+Tv+2w= 0.

Again we can study the rows or the columns, and we start with the rows. Each
equation describes a plane in three dimensions. The first plane is 2u + v + w = 5,
and it is sketched in Fig. 1.2. It contains the points (3, 0, 0) and (0, 5, 0) and (0, 0, 5).
It is determined by those three points, or by any three of its points—provided
they do not lie on a line. We mention in passing that the plane 2u + v + w = 10
is parallel to this one. The corresponding points are (5, 0,0) and (0, 10, 0) and
(0, 0, 10), twice as far away from the origin—which is the center point u = 0, v = 0,
w = 0. Changing the right hand side moves the plane parallel to itself, and the
plane 2u + v + w = 0 goes through the origin.t

The second plane is 4u — 6v = —2. It is drawn vertically, because w can take
any value. The coefficient of w happens to be zero, but this remains a plane in

w

A
/“ plane 2u+v +w=>5
/—
plane 4u — 6v =-2
(1, 1, 2) = point of intersection
‘ with third plane
—

line of intersection

u

Fig. 1.2. The row picture: intersecting planes.

1 If the first two equations were 2u + v + w = 5 and 2u + v + w = 10, the planes would
not intersect and there would be no solution.
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3-space. (If the equation were 4u = 3, or even the extreme case u = 0, it would
still describe a plane.) The figure shows the intersection of the second plane with
the first. That intersection is a line. In three dimensions a line requires two equations;
in n dimensions it will require n — 1.

Finally the third plane intersects this line in a point. The plane (not drawn)
represents the third equation —2u + 7v + 2w = 9, and it crosses the line at u = 1,
v = 1, w = 2. That point solves the linear system.

How does this picture extend into n dimensions? We will have n equations, and
they contain n unknowns. The first equation still determines a “plane.” It is no
longer an ordinary two-dimensional plane in 3-space; somehow it has “dimension
n — 1.” It must be extremely thin and flat within n-dimensional space, although it
would look solid to us. If time is the fourth dimension, then the plane ¢t = 0 cuts
through 4-dimensional space and produces the 3-dimensional universe we live in
(or rather, the universe as it was at t = 0). Another plane is z = 0, which is also
3-dimensional; it is the ordinary x-y plane taken over all time. Those three-dimen-
sional planes will intersect! What they have in common is the ordinary x-y plane
att = 0. We are down to two dimensions, and the next plane leaves a line. Finally
a fourth plane leaves a single point. It is the point at the intersection of 4 planes
in 4 dimensions, and it solves the 4 underlying equations.

I will be in trouble if that example from relativity goes any further. The point
is that linear algebra can operate with any number of equations. The first one pro-
duces an n — 1-dimensional plane in n dimensions. The second equation deter-
mines another plane, and they intersect (we hope) in a smaller set of “dimension
n — 2.” Assuming all goes well, every new plane (every new equation) reduces the
dimension by one. At the end, when all n planes are accounted for, the intersection
has dimension zero. It is a point, it lies on all the planes, and its coordinates
satisfy all n equations. It is the solution! That picture is intuitive—the geometry
will need support from the algebra—but it is basically correct.

Column Vectors

We turn to the columns. This time the vector equation (the same equation as (1))
is

2 1 1 5
u| 4(+v|—-6[+w|0|=[-2| (2)
-2 7 2 9

Those are three-dimensional column vectors. The vector b on the right side has
components 5, —2, 9, and these components allow us to draw the vector. The
vector b is identified with the point whose coordinates are 5, —2, 9. Every point in
three-dimensional space is matched to a vector, and vice versa. That was the idea
of Descartes, who turned geometry into algebra by working with the coordinates
of the point. We can write the vector in a column, or we can list its components
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0
0
s 5
—2 | = linear combination
9
1
=210
2
(a) ®)

Fig. 1.3. The column picture: linear combination of columns equals b.

asb = (5, —2,9), or we can represent it geometrically by an arrow from the origin.t
Throughout the book we use parentheses and commas when the components are
listed horizontally, and square brackets (with no commas) when a column vector
is printed vertically.

What really matters is addition of vectors and multiplication by a scalar (a number).
In Fig. 1.3a you see a vector addition, which is carried out component by
component:

5 0] [o 5
o|l+|-2]+|o[=]=-2]
0 o |9 9

In the right figure there is a multiplication by 2 (and if it had been —2 the vector
would have gone in the reverse direction):

1 2 1 <3
2l0|=]o|, -2]|o|=]| ol
2| |4 2 —4

T Some authors prefer to say that the arrow is really the vector, but I think it doesn’t
matter; you can choose the arrow, or the point, or the three numbers. (They all start with
the same origin (0, 0, 0).) In six dimensions it is probably easiest to choose the six numbers.
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Also in the right figure is one of the central ideas of linear algebra. It uses both
of the basic operations; vectors are multiplied by numbers and then added. The result
is called a linear combination, and in this case the linear combination is

2 1 1 5
41+ |—6|+2[0|=|-2]
—2 7 2 9

You recognize the significance of that special combination; it solves equation (2).
The equation asked for multipliers u, v, w which produce the right side b. Those
numbers are u = 1, v = 1, w = 2. They give the correct linear combination of the
column vectors, and they also gave the point (1, 1, 2) in the row picture (where
the three planes intersect).

Multiplication and addition are carried out on each component separately.
Therefore linear combinations are possible provided the vectors have the same
number of components. Note that all vectors in the figure were three-dimensional,
even though some of their components were zero.

Do not forget the goal. It is to look beyond two or three dimensions into n
dimensions. With n equations in n unknowns, there were n planes in the row
picture. There are n vectors in the column picture, plus a vector b on the right
side. The equations ask for a linear combination of the n vectors that equals b.
In this example we found one such combination (there are no others) but for cer-
tain equations that will be impossible. Paradoxically, the way to understand the
good case is to study the bad one. Therefore we look at the geometry exactly when
it breaks down, in what is called the singular case.

First we summarize:

Row picture: Intersection of n planes

Column picture: The right side b is a combination of the column vectors

Solution to equations: Intersection point of planes = coefficients in the combina-
tion of columns

The Singular Case

Suppose we are again in three dimensions, and the three planes in the row pic-
ture do not intersect. What can go wrong? One possibility, already noted, is that
two planes may be parallel. Two of the equations, for example 2u + v + w = 5 and
4u + 2v + 2w = 11, may be inconsistent—and there is no solution (Fig. 1.4a shows
an end view). In the two-dimensional problem, with lines instead of planes, this is
the only possibility for breakdown. That problem is singular if the lines are parallel,
and it is nonsingular if they meet. But three planes in three dimensions can be in
trouble without being parallel.

The new difficulty is shown in Fig. 1.4b. All three planes are perpendicular to
the page; from the end view they form a triangle. Every pair of planes intersects,



