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Preface

Graph polynomials have been developed for measuring structural information of networks
using combinatorial graph invariants and for characterizing graphs. Various problems in
graph theory and discrete mathematics can be treated and solved in a rather efficient
manner by making use of polynomials. Various graph polynomials have been proven useful
in discrete mathematics, engineering, information sciences, mathematical chemistry, and
related disciplines.

In general, graph polynomials encode graph-theoretical information of the underlying
graph in various ways. A particular graph polynomial may be interesting if it encodes useful
graph parameters. An example is the Wiener polynomial whose coeflicients are based on dis-
tances in a graph. Then for simple graph classes, the Wiener polynomial provides a simple
and compact characterization of these graphs which can be analyzed quantitatively. In addi-
tion, graph polynomials and their zeros have been a valuable source for investigating various
problems in discrete mathematics and related areas. It seems that griph polynomials were
first introduced by J.J. Sylvester in 1878, and further studied by J. Petersen. Until now,
there have been plenty of graph polynomials, such as the chromatic polynomial, characteris-
tic polynomial, matching polynomial, Tutte polynomial, Whitney (rank) polynomial, Jones
polynomial, Hosoya polynomial, Wiener polynomial, distance polynomial, edge-difference
polynomial, independence polynomial, adjacency polynomial, flow polynomial, knot poly-
nomial, topological transition polynomial, interlace polynomial, permanental polynomial,
homomorphism polynomial, and so on. While studying these polynomials, it is crucial to
study their particular properties such as location of zeros, interpretation of zeros, and so
forth.

The main goal of this book is to present how graph polynomials characterize graph
parameters efficiently, by emphasizing theoretical and practical problems. In the past few
decades, many graph polynomials have been studied and plenty of theoretical and practical
approaches have been developed. The topics addressed in this book cover a broad range
of concepts and methods in terms of graph polynomials. The topics range from analyz-
ing mathematical properties of graph polynomials to applying the polynomials in several
application areas. By covering this broad range of topics, the book aims to fill a gap in
contemporary literature in disciplines such as applied mathematics, information sciences,
and mathematical chemistry.

Many colleagues, whether consciously or unconsciously, have provided us with input,
help, and support before and during the preparation of this book. In particular, we thank
Abbe Mowshowitz, Frank Emmert-Streib, Zengqgiang Chen, Bo Hu, Shailesh Tripathi,
Martin Trinks, and Guihai Yu, and we apologize to all whose names have been inadver-
tently omitted. Also, we thank our editors, Sunil Nair and Alexander Edwards from CRC
Press/Taylor & Francis Group, who have always been available and helpful. Last but not
least, Yongtang Shi, Matthias Dehmer, and Xueliang Li thank the National Natural Science
Foundation of China and Nankai University for their support. Matthias Dehmer thanks the
Austrian Science Funds (project no. P26142) for supporting this work. Matthias Dehmer
also thanks his sister, Marion Dehmer-Sehn, who passed away in 2012, for all her mental
support.
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% Preface

To date, no book dedicated exclusively to graph polynomials has been published. There-
fore, we hope this book will broaden the scope of the scientists who deal with topics related
to graph polynomials rooted in graph theory, discrete mathematics, algebra, chemical graph
theory, applied mathematics, computer science, information sciences, and related disciplines.
Finally, we hope this book conveys the enthusiasm and joy we have for this field and inspires
fellow researchers in their own practical or theoretical work.

Yongtang Shi
Tiangin

Matthias Dehmer
Munich

Xueliang Li
Tiangin

Ivan Gutman
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Chapter 1

The Interlace Polynomial

Ada Morse
University of Vermont
Burlington, VT
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1.1 Introduction

The interlace polynomial of a graph arises in a number of settings both theoretical
(e.g., isotropic systems) and applied (e.g., DNA sequencing by hybridization). We begin
with the most straightforward, that of a recursive method for counting Eulerian circuits
in two-in, two-out digraphs arising from an application in DNA sequencing. The interlace
polynomial of a simple graph is obtained by generalizing the recursion used to solve this
counting problem. We then discuss a closed form for the polynomial in terms of its adjacency
matrix, the structure of which suggests definitions for analogous polynomials as well as a
two-variable generalization. Another context in which the interlace polynomial arises is in
isotropic systems, where it appears as a specialization of the Tutte-Martin polynomials,
a connection we follow by way of the Martin polynomials of 4-regular graphs. Finally, we
review generalizations of the polynomial to square matrices and delta-matroids.

In the context of counting Eulerian circuits in two-in, two-out digraphs, the interlace
polynomial arose through Arratia et al.’s work on DNA sequencing [2]. In DNA sequencing
by hybridization, the goal is to reconstruct a string of DNA knowing only information
about its shorter substrings. The problem is to determine, from knowledge about the shorter
substrings, whether a unique reconstruction exists.

More precisely, if A = ajas - - a,, is a sequence consisting of m base pairs, the [-spectrum
of A is the multiset containing all [-tuples consisting of [ consecutive base pairs in A. Given
the knowledge of the [-spectrum, the goal is to determine the number k;(m) of sequences
of base pairs of length m having that [-spectrum.
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In [2], the authors associate with a given [-spectrum its de Bruijn graph: a two-in two-
out digraph D such that the Eulerian circuits of D are in bijection with sequences of base
pairs having that [-spectrum. The problem, then, is to count the number of Eulerian circuits
of D. This approach led to the discovery of a recursive formula for computing the number of
Eulerian circuits of D based on an associated interlace graph. In [3], Arratia et al. generalized
this recursion to define the interlace polynomial of an arbitrary simple graph.

The Eulerian circuits and cycle decompositions of 4-regular graphs have been an area
of significant interest among graph theorists for many years, and approaches using graph
polynomials have frequently proved fruitful [36,35,33,29]. The Martin polynomial [36,35],
in particular, is closely related to the interlace polynomial as it counts, for any k, the number
of k-component circuit partitions of a 4-regular graph.

This connection can be made explicit and, indeed, generalized. In a series of papers in
the 1980s-1990s, Bouchet introduced the notion of an isotropic system to unify aspects
of the study of 4-regular graphs and binary matroids [8,12,14], including a generalization
of the Martin polynomials to this area [14]. Shortly after the discovery of the interlace
polynomial, it was noticed that the interlace polynomial can be found as a specialization of
the (restricted) Tutte -Martin polynomial of an isotropic system [13,1].

A connection between the interlace polynomial and the Tutte polynomial can be found by
way of the Martin polynomial. However, this connection only captures the Tutte polynomial
t(G; z,y) for plane graphs when z = y, and so does not provide any strong link between
the interlace polynomial and the many specializations of the Tutte polynomial, such as the
chromatic polynomial. In recent work, Traldi has introduced a matroid associated with a
graph, called its isotropic matroid, such that the interlace polynomial(s) of the graph can
be recovered from parameterized Tutte polynomial(s) of its isotropic matroid [44].

Many generalizations of the interlace polynomial have been obtained. In [4], Arratia
et al. defined a two-variable interlace polynomial of which the single-variable polynomial
is a specialization. In doing so, they discovered, concurrently with Aigner and van der
Holst [1], a closed form for the single-variable interlace polynomial in terms of its adjacency
matrix. This closed form has a natural extension to arbitrary square matrices, and using
a delta-matroid associated with the adjacency matrix of a graph, Brijder and Hoogeboom
obtained a generalization.of the interlace polynomial to delta-matroids [22]. In each case,
the recursive definition of the interlace polynomial has also been generalized.

1.2 The Interlace Polynomial of a Graph

We begin by defining the interlace polynomial recursively by way of counting Eulerian
circuits in two-in, two-out digraphs, and then discuss a closed form, an analogous poly-
nomial, and a two-variable generalization. We conclude with selected evaluations of the
interlace polynomial.

1.2.1 Preliminary definitions

We first establish some standard definitions and notation to be used throughout the
chapter. Formally speaking, a graph G is a triple (V(G), E(G),¢) where V() is a finite
set, of vertices, E(G) is a finite set of edges, and ¢ is a function from E(G) to {{a,b}:a,b €
V(G)}. Let e € E(G). If ¢(e) = {a} is a singleton set, then e is said to be a loop and a is
called a looped vertex. If ¢(e) = {a, b}, then we say e is an edge between a and b, a and b are
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adjacent, a and b are the endpoints of e, and both a and b are incident to e. In general, we
will suppress the function ¢, define an edge by its endpoints, and define the graph G by the
pair (V(G), E(G)). The degree of a vertex is the number of edges to which it is incident,
counting loops twice. A graph is said to be k-regular if every vertex has degree k. If a
and b are vertices with more than one edge between them, then we say there is a multiple
edge between a and b. A graph is simple if it contains no loops or multiple edges. A walk
in G is an alternating sequence of vertices and edges viejvoes - - - vpegpv41 such that e; is
incident to v; and v;4 for each i. A walk is closed if its first and last vertices are the same.
A closed walk repeating no edges is a circuit. A circuit in which no vertices are repeated
is called a cycle. A path is a walk beginning and ending at distinct vertices and containing
no repeated vertices. A graph is connected if for any vertices a and b there is a path from
a to b. A component of a graph is a maximal connected subgraph. We denote by k(G) the
number of components of G. For T' C V(G) the subgraph induced by T, denoted G[T'], is the
graph (T, E’) where E’ is the set of edges in E(G) with both endpoints in T. If v € V(G),
define G \ v to be the subgraph of G induced by V(G)\ {v}. )

The adjacency matriz of a graph G, denoted A(G), is the |V(G)| x |V(G)| matrix over
GF(2) with rows and columns indexed by V(G) defined by setting A(G)qp =1 if @ and b
are adjacent and 0 otherwise. For T' C V(G), define the rank r(G[T]) to be the matrix rank
r(A(G[T])), and the nullity n(G[T]) to be the matrix nullity n(A(G[T])). By convention,
n(G[0]) = 0. Note that for a graph G, the nullity and rank of G are sometimes defined by
n(G) = |E(G)| = [V(G)| + k(G) and r(G) = |V(G)| - k(G). —

A digraph, informally speaking, is a graph where each edge is given a direction, that is,
the function ¢ has codomain V(G) x V(G). If a directed edge e goes from a to b, then a is
called the tail of e and b is called the head of e. The indegree of a vertex in a digraph is the
number of edges for which the vertex is the head, the outdegree the number for which it
is the tail. A two-in, two-out digraph is a 4-regular digraph such that each vertex has both
indegree and outdegree equal to 2. A walk viejvoes -+ - vpepvr41 in a digraph is directed or
consistently oriented if e; is directed from v; to v; 1, for each i.

A planar graph is a graph that can be embedded in the plane (i.e., drawn in the plane
by associating vertices to points and edges to curves between their endpoints, such that no
two edges intersect other than at a shared endpoint). A plane graph is a planar embedding
of a (planar) graph.

For sets A and B, the symmetric difference of A and B is AAB = (AUB)\ (ANB).

We can now begin defining the interlace polynomial by way of counting Eulerian circuits
in two-in, two-out digraphs.

Definition 1.2.1 (interlace graph) Let G be a two-in, two-out digraph. A FEulerian
circuit of G is a closed, directed walk of G containing each edge exactly once. Given a
Eulerian circuit C of G, we say that vertices a and b are interlaced if the cycle visits them
intheorder...a...b...a...b... and noninterlaced otherwise. The interlace graph or circle
graph of C, denoted H(C'), is the graph whose vertices are the vertices of G with an edge
between two vertices if they are interlaced in C (see Figure 1.1b and c).

Interlace graphs have been extensively studied [11,9,15,26,41,40] and were characterized
by Bouchet in [9,15]. A particular focus of the area, due to a Gauss problem, has been
characterizations of the interlace graphs arising from Eulerian cycles in plane 4-regular
graphs [26,41,40].

There is a natural operation defined on Eulerian circuits of two-in, two-out digraphs in
terms of this interlace relation.

Definition 1.2.2 At each vertex of a two-in, two-out digraph G, there are two possible
(orientation consistent) pairings of in-edges and out-edges. For a pair of vertices a and b



4 Graph Polynomials

a b
P
(a)
a b a b
c ¢
(b) (c)
a b a b
G €
(d) (e)

FIGURE 1.1: Transpositions of Eulerian circuits and the interlace graph: (a) a two-in,
two-out digraph G; (b) a Eulerian cycle C' in G; (c¢) the interlace graph H(C'); (d) the
Eulerian circuit C%?; (e) the interlace graph H(C?).

interlaced in a Eulerian circuit C' of G, define the transposition C* to be the Eulerian
circuit obtained by switching the pairing of edges at a and b (see Figure 1.1b and d).

The Eulerian circuits /Qf G form a single orbit under the action of transposition, the
proof of which can be found in [3] but was known previously in more general form in [39,47].
Observation of the effect on the interlace relation by performing the above operation to a
Eulerian circuit leads to a corresponding definition for interlace graphs, presented here for
graphs in general.

Definition 1.2.3 Let G be any graph. Let v € V(G). For any pair of vertices a,b € V(G),
partition the remaining vertices of GG into the following sets: (1) vertices adjacent to a and
not b, (2) vertices adjacent to b and not a, (3) vertices adjacent to both a and b, and
(4) vertices adjacent to neither a nor b. Define the pivot G to be the graph obtained by
inserting all possible edges between the first three of these sets, and deleting those that
were already present in G (see Figure 1.2). Denote by G, the graph GG with the labels of
the vertices a and b swapped.

Although the above definition of pivot is attributable to Arratia et al. [2], the idea of
the pivot appeared in the earlier work of Kotzig [34] on local complementations and the
graph (G*),, is defined by Bouchet in [12] as the complementation of G along the edge ab.
The precise connection to both is as follows:

Definition 1.2.4 Let G be a graph. For v € V(G), define the open neighborhood of v
to be N(v) ={w € V(G) \ {v} : w is adjacent to v}. Note that v € N(v) even if v is a
looped vertex. We define the local complement G*v to be the graph obtained from G
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FIGURE 1.2: (a) A graph G with edge ab and vertices partitioned as in Definition 1.2.3
(the parts of G unaffected by pivoting are not shown). Dashed lines represent the edges not
present in the graph. (b) Pivot G is obtained by toggling edges/nonedges among the sets
of vertices labeled 1,2, and 3.

by interchanging edges and nonedges in N(v). By convention, we read graph operations
left-to-right; therefore, Gxvxw*v = ((G*v) *w) *v.

Theorem 1.2.1 [18,12] Let G be a graph. If ab is an edge in G _with neither a nor b a
looped vertex, then (G™®)qp = Gxaxbx*a.

In the case of interlace graphs, the pivot operation captures the behavior of a
transposition of a Eulerian circuit in the following sense.

Theorem 1.2.2 [3] For a Eulerian circuit C of a two-in, two-out digraph G. we have
(H(C))® = (H(C®))ap-

We can now define the interlace polynomial of a graph. Arratia et al. proved in [3] that
the recurrence below does not depend on the order in which the edges are chosen; that is,
the polynomial is well defined.

Definition 1.2.5 (The interlace polynomial [3]) Let G be a simple graph. The inter-
lace polynomial of G, denoted gy (G;x), is defined by

(G\a;x (G \ b:x), abe E(G
qN(G;m:{g:‘( \ai2)+an(G\bia), abe B(G),

where FE), is the graph on n vertices with no edges.

Note that while the recurrence above is presented in its original form, in generalizations
of the interlace polynomial, the label-switching operation G (see Definition 1.2.3) occurs
as part of the generalized pivot operation. In the case of the recurrence above, this can be
obtained, using local complementation in place of the pivot operation (see Theorem 1.2.1).
Under that convention, the recurrence above becomes gy (G;z) = gn(G\ a; ) + qn (G *a *
bxa\ a;r), which aligns with the form of the recurrence used in subsequent sections. In
addition, the interlace polynomial was originally denoted by ¢(G). We follow [4] in reserving
that notation for the two-variable generalization.

Definition 1.2.5 is stated for simple graphs. It can, however, be extended to the case of
looped graphs (i.e., graphs with loops, but without multiple edges). In this case, the recur-
rence above only holds for edges where neither endpoint has a loop, and an additional



