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Introduction.

M. N. ROSENBLUTH

General Atomic, Division of General Dynamics Corporation - San Diego, Cal.

Unhappily, I am finally writing this introduction in the days following
the awful events of President Kennedy’s assassination which is donlinating
my thoughts now. Perhaps I will be excused then for saying some words
about a strong nontechnical recollection I have of the Varenna summer school.
I think everyone who has been there will recall it as a vital experience in inter-
national co-operation where new friends from many countries are made and
ideas and feelings—technical, political and personal—freely exchanged. Even
after making allowances for the idyllic setting and the common technical inte-
rest of the participants, one is bound to receive a strong impression of the
common humanity of us all and a hope that the obstacles to the late Presi-
dent’s vision of a world of peace and progress may indeed be overcome.

The field of plasma physics is especially suitable for an international school
since so many of the participants have been involved in the world-wide quest
for thermonuclear power. Fortunately, a happy tradition of total co-operation
between all countries exists in this a,rea.; perhaps because it is almost unique
in being a well-defined and challenging scientific problem from which great
economic, but not military, benefits may be foreseen as the result of scien-
tific progress.

My own interest in the thermonuclear problem has undoubtedly led to a
certain bias in the selection of the topics to be covered in this course. It has
always seemed to me that the best starting point for the study of plasma
physics is to try to understand the simplest possible, most idealized, situation.
This implies a high-temperature plasma in which collective effects predomi-
nate and a quiescent plasma in a simple equilibrium so that linear wave dyna- -
mics can be considered. The experimental attainment of this theoreticians’
dream is of course precisely the thermonuclear problem. After this under-
standing has been reached it may be possible to comprehend more fully complex
astrophysical and geophysical plasmas In the meantime, considerable techno-
logical progress may be made through intuition and invention, but I believe
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that the ultimate exploitation of plasmas will depend on systematic scientific
theory and experiment. »

The aim of this series of lectures then has been to present the elements of
the theory of high-temperature plasmas. I believe that most of the important
topics have been at least sketchily covered, with the exception of the study
of the various complex types of high frequency plasma waves—plasma oscil-
lation, cyclotron waves, whistlers, etc. All of the students had considerable
knowledge of the field already so that the lectures are on a fairly advanced
level. Some preliminary study of the field would probably be advisable before
attempting to read these notes, although I do not feel that they should be
useful only to experts. For example, the lecture notes from the Riso course
in 1960 (Riso Report No. 18 Danish AEK) are somewhat more elementary.
It must be pointed out that these lecture notes occupy a no-man’s land be-
tween original research papers and a coherently organized and polished book
of a single author. Their virtue perhaps is that they are broader and more
up to date than a monograph could be.

The first step in understanding a plasma is the reduction of this many-
body system to a 6-dimensional problem described by the Vlasov and Fokker-
Planck equations. This topic is covered in the Kinetic Theory lectures of the
noted Shakespearian actor, Dr. W. BE. THoMPSON. A further reduction to
the modified magnetohydrodynamic fluid-type equations is possible in the
limit of small gyro-radius and low frequency. This development culminates
in the energy-principle for determining hydrodynamic stability and is discussed
by one of its originators, Dr. RUSSEL KULSRUD. The energy principle has been
exploited to great effect in the study of complex plasma confinement geometries.
Some of these very general results are presented here by Dr. CLAUDE MERCIER.
These sets of lectures may be considered to be on basic and already well-under-
stood aspects of plasma physics.

The other lectures concern topics still imperfectly understood and under
development. : _

An important area in which much work continues to be done is the exploi-
tation of the rich variety of phenomena contained within the Vlasov equations
but not the simple fluid equations. A superficial treatment of some of these
phenomena is contained in my lectures on Microinstabilities. It should be
noted that a slight extension of these techniques to include variations along
the magnetic field leads to the «universal » instability.

It has become apparent that much of the content of the usual MHD equa-
tions is contained in the infinite conductivity constraint that particles remain
« tied » to field lines in any motion. Thus when this constraint is relaxed even
slightly new types of motion become possible as is discussed in the lectures
on Resistive Instabilities by Dr. HAROLD FURTH, who also enlivened the pro-
ceedings notably in his role of Court Jester.
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As in other types of fluid dynamies a great many of the answers we seek
are obscured by our inability to treat nonlinear problems effectively. Some
important beginnings have been made and are discussed in the lectures of
Professor PETER STURROCK. Another topic, of both mathematical and phys-
ical importance, concerns the proper ordering schéme for the approximate
treatment of boundary layers and is discussed in the lectures of Dr. BRUNO
BErTOTTI: Finally, while the course was in general directed toward the study
of high-temperature plasma a very fascinating sidelight was given to us in the
lively lectures of Dr. GUNTER ECKER on the low-temperature gas-discharge
regime. It is interesting to note the differences and similarities in two such
closely-related topics and sobering to realize how rare and difficult communi-
cation between them has been.

In addition to these formal lectures the theory of adiabatic invariants was
discussed by R. KuLsrUD following two important papers by KULSRUD him-
self and M. KrRUSKAL. They are reprinted «in extenso ». Further seminars on
specialized and current research were presented by G. SANDRI on The New
Foundations of Statistical Dynamics, D. PFIRSCH on Microinstabilities of the
Mirror Type in Inhomogeneous Plasmas, G. LAVAL and R. PELLAT on the Bound-
ary Layer between a Plasma and a Magnetic Field, G. KNORR on Nonlinear phe-
nomena in Microscopic Wave Propagation, S. CUPERMAN, F. ENGELMAN and J.
OxENIUS on Nonthermal Impurity Radiation from a Hot Spherical Plasma, K.
voN HAGENOW and H. KoPPE on The Partition Function of a Completely Ionized
Gas, F. ENGELMAN on Quantum-Mechanical Treatment of Electric Microfield
Problems in Plasmas, J. B. TAYLOR on Finite Larmor Radius Effect and
the Rotational Instability of Plasma in Fast B, Compression Experiments
(Theta-Pinch), D. VoSLAMBER and D. K. CALLEBAUT on Stability of Force-Free
Magnetic Fields, C. F. WANDEL and O. KoFOED-HANSEN on the Eulerian-
Lagrangian Transformation in the Statistical Theory of Turbulence, N. A.
KRALL on Oscillations in Nonuniform Plasmas, P.'J. KELLOG on The Earth’s
Environment: Observations on a Very Large Mirror Machine, E. T. KARLSON
on the Motion of a Plasma in an Inhomogeneous Magnetic Field.

Unfortunately it is only possible to list these by title and author here as
we dispose only of their summaries. These seminars helped a great deal to
give some experimental back-up for these theoretical lectures.

Finally, I would like to give my deep thanks to all those who have parti-
eipated 80 whole-heartedly in the course—to the knowledgeable attentive and
long-suffering student body, to those who presented’semma,rs; and to the
lecturers. I hope tue reader will concur with my judgement of the excellence
of their efforts.

The chief thanks of course go to our hosts, the Italian Physical Society,
who have provided the magnificent villa on Lake Cemo, with its excellent
facilities and amenities, making a physical background most conducive to
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relaxed and harmonious discussion. I would like to mention especially those
representatives on the scene who have been so helpful and made us feel so
welcome; Dr. BRUNG BERTOTTI, the scientific secretary, who has done most
of the director’s work, the secretarial staff—Misses LAFARGE, NAVONE, and
VARIOLA—who not énly coped with these mountains of manuscript but also
went far out of their way to take care of all the troublesome details which
invariably arise, and Professor'G. GERMANA who ran the whole operation so
skillfully.
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LEZIONI

Kinetic Theory of Plasma.

W. B. THOMPSON
Atomic Energy Research Establishment - Culham

PArT I

1. — Introduection.

The object of kinetic theory is to extract from an exact and detailed
description- of a complex physical system that information needed to describe

its gross behaviour.
For exa,mple, consider a system composed. of many cha.rged pa.rtlcles having

mass m,, charge e; and velocity v,; then in a volume V large enough to contain
many particles, we may define a macroscopic density p, veloclty V, charge Q,

and current J, by -
%2 s ¢
% 26 =0;
It is often convenient to write \
=V+4e; J=QV+j.

The macroscopic variables o, ¥ etc. satisfy equations of motion that may
be dedueed from the laws of motion for the individudl particle, i.e. from

mv; = F¢= e;(E+ v,'XB) + Fmt y

where
Z F, =0 -

1 — Rendiconii S.I.F. - XXV.



2 W. B. THOMPSON

from conservation -of -momentum. Then 0p/ot is determined by equating the
rate of change of density to the flux into a volume; i.e.

g
(I.1.1) 5 T VieV)=0.

The rate of change of momentum is similarly

)

0 0 0 d
a(@y) +é—;'§,~:mv"v"=§(QV) +a—x'(QW)+a_x'zmcici=

= SF.=3 e(E+v.xB)=QE+VxB)+jxB,

and, defining the stress temsor p, = dmec,c, and using the continuity
eq. (I.1.1), :

oV
(1.1.2) g(§+ V-VV)+V-p=Q(E+ VxB)+jxB.

In a similar way, we may equate the rate of gain of energy to the rate of
doing work, <.e.

ai(zlm'vi) +V-Zv,—lmv’,’»:ZF,--v,-= Sevi E=J-E,
i ;2 i' 2 i i
or

V-(g %’;—}—Vp) +%;%mcﬁ+§%MGﬁV-V+(V-p)-v—+—V-Zc%m03=
=QV-E+j-E.
and defining the internal, energy
U:E%mc’}:‘%nkT,
and the heat flux ‘
q=2cime,

DU
(I.1.3) ot UV-V+ (p-VV)+V-q=j-E.

_For an ionized gas, the charged particles are of two sorts; electrons and ions,
and the interdiffusion of these particles gives rise to a current; the electron
and ions moving with speeds V+ AV_, V+ AV,. By considering the two
gases separately the quantity AV_ is found to satisfy

DV DAV 1 e_ F_
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If this and a similar equation for AV, are multiplied by a product of density
and charge there results

Dj e 2 Q Q2 e? e \?
D+ V-t g Ve g Upet [T [ () e ()]

‘[E + V><B]+%(ij)— [n (m )AV_+n+(M) AV+]] xB=0,

m- Dj . :
(I.1.4) = DJt [ ‘p-—JjxB]l+[E+VxB]—9j=0,
where
. m_ ne— 1&.
= [m_ -+ m+F+]

A more formal treatment of the relation between the microscopic and the
macroscopic can be effected by employing a distribution function f; a quantity
which describes the statistical evolution of the system, in which case the under-
lying microscopic dynamics of the system is embraced in an equation of
motion for f, the equation of transport.

There are several sorts of distribution function f, ranging from the Liouville
function F(wy, @, ..., @y, ¥y, ..., Vy) to the Boltzmann single-particle function
f(z,.v). The Llouwlle functlon is a function of the complete set of micro co-
ordinates, and satisfies the equation

(I.1.5) aF+[H cos Ty ’l)l...’DN),F]=0;

which is completely equivalent to the microscopic dynamics, H being the
complete Hamiltonian. This can be written, introducing the acceleration

field A,(x, ... z,),

oF oF f 3
E—Fiz(v,--&:—}—A,-(w,...mN).a_I:):O-

The equivalence of Liouville’s equation and the equations of motion is estab-
lished by observing that if th% system is given as in the state specified by

%,(0), 25(0) ... ,(0), v,(0), v5(0) ... v,(0),
so that
FoO)y=1 6(-‘3;— xi(o)) 6(”6_”((0)) ’
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its subsequent evolution is described by

(1.1.6) F(t) = IT 8 (x,— X.(t) d(o—Vi1)

where X,(¢) and V; (f) are the relevant solutions of the equations of motion, i.e.
e
X;(t) = =.(0) + arvi(t),

0
t

(I.1.7) Vi(t) = v,(0) + | dt’ A(Xi(t), Vi(t); X Xaoti(t')y Vaors(t')) -

The Boltzmann function on the other hand satisfies an equation of the
form 4 '

of | of of _of

(11'8) at + a ’+' Ao( 7 t) a at ot e

. The transport equation for the Boltzmann function may be obtained by
repeated integration of the Liouville equation, for f itself is defined by

f(@y, v,) = VfF(wl...w,,, V5 .00 Oy) A28, ... A2y d?0; ... A0y .

If there were no interaction between particles so that the acceleration ﬁeld'A,
could be factored as A,(x,, v,)A,(_a:g, ?,) ... ete., then a closed equation for f
could be obtained by integrating over the Liouville equation as

of of of _

(I.1.9) 8t+ "% + A4- 3 0,

the collisionless Boltzmann, or Vlasov equation. .
If, however, there exists an inter-particle potential ¢(x;, a;,) the final integral
cannot be evaluafed in terms of x,, v, and f alone, instead it becomes

14 0 0 ‘
== —1 ’z a—vl'fé;; ¢(x1, x;)F(x, ces x,) ds’Uz eee d”v,d,‘a;, cee d3$ﬂ 9
“or, introducing the two-particle function

11, 2) = szF(xl, Xy... Xy) A2y ... APy A%05 ... AP0y,

N 0 og(1, 2)
T Vm, avl ox,

i, 2) sz, d%v, ,

3t |un
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and the general equation of transport for f becomes

o, of ., of o e
ol +A.,-é;—ﬁﬁ-fa By o) (1, 2) doz, a0,
or
o o, of
(I1.1.10) n T a + A, 3 +I(f)=0.

The first major problem of kinetic theory is to find an approximate form
for I(f); the second being that of solving (I.1.10) for a given form of I and
deducing the moments required for a macroscopic description of phenomena.

For diffuse gases in which a strong but localized interaction occurs between
the particles, a coarse-grained equation for f may be obtained in which the
interaction term I is represented by the rate of change of f produced by impul-
sive collisions between particles; (g=wv,—v,), 0 =scattering angle ’

i{ -, =fd!2 f dav,go(g,_o)[f(f:l) f(®@,) — f(vl) f(va)],

where 9,, v, are related to v, v, and 6, being in fact the negatives of the veloc-
ities resulting when a collision between v, and v, occurs with a scattering
angle 6. Our later work will be devoted to showing that, with certain correc-
tions, this result is a valid approximation for an ionized gas where the forces
of interaction are weak, but long ranged. At present we will concentrate on
-the second .problem, that of solving Boltzmann’s equation and determining
the transport coefficients.

2. — Hydrodynamic equations from the transport equation.

As a preliminary to any attempt to solve the Boltzmann equation we will
use it to6 form the hydrodynamie equations. To do this we use the definitions
of Section 1, which, expressed in terms of the distribution function f become
the following moments of f ‘ '

g=ffmdav; ~gV=ffmbd’v; c=v—V;

P ='ffmcc d3v; g kT =ff 3 me2 d3v; q =ff ime2cdw.
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Since the B.E. forms a representation of the dynamics of the system, the
macroscopic -equations for the moments may be formed therefrom, i.e. from

@z A T P

do : o
§+d1V(QV) =0,

since |mI(f)d*» =0, from mass conservation.
From (&*mmv{ } =0,

(1.2.2) 9]])” +V-p—F=0  where F;fmAfdso,

and (I.2.1) has been used. Finally from f dso gme* { },

(I.2.3) %-k UdivV+p:VV +divg= 0,

and

U=3nkT.

For an ionized gas, there are similar equations for each component, although
now the interaction integral does not vanish, but leads to terms representing
the transfer of energy and momentum between the two components. Alterna-
tively these equations may be combined and as in Section 1, the mean velocity
may be defined as oV = (o; + 0-)V =0+ ¥V + 0-V-, and p, T ete. defined rela-
tive to V, whereupon

(I.2.4) at +d1v V=0,
DV R
(I.2.5) ey +V'P—QE+VxB)—jxB=0,
and
DU
(I.2.6) +UdeV+p VV +divg—j-E=0.

To illustrate important methods used in solving the B.E. we shall first
consider some simple representations of a simple gas, and only gradually
approach the complexities of the ionized gas in a magnetic field.
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3. — The normal solution: Hilbert’s procedure.

To derive meaningful hydrodynamic equations it is useful to restrict atten-
tion first to those situations in which the rate of change of the distribution
function is slow so that the collision frequency is much greater than any
hydrodynamic frequency, ¢.e. if we introduce a macroscopic time scale, T,
length scale, L, and a characteristic velocity, V = LT-%, then, if the external
forces are small, so that 7-2 <1, the L.H.S. of the B.E. scales as 7-!. We
can also define a collision time by 7-'~ng,V, where ¢, is a mean cross-section,
whereupon the condition, collision frequency is much greater than hydro-
dynamic frequency, becomes 7/T =¢e <1, and the B.E. may be written

0 0 )
(1.3.1) I(f,f)=e{a+z{-a—x+Ao-a—v}f=eDf-

It now makes sense to seek a solution expanded in powers of &:
f=f+en+..,
which on being introduced into (I.3.1) reduces it to

- (L.3.2) I(fo; fo) =0,

(I1.3.3) I(fo, f1) = Dfs -

The first equation here is satisfied by the locally Maxwellian distribution;
i.e. by '

# i 2

where n, T, V are undetermined functions of z, ¢.
Hilbert observed that by writing f,=/f, ¢, (1.3.3) may be written

fds'vlfo(v)fo(”’) lv—v'|o(v— v, 0)[#(v) + $(') — $(v) — $(v')] = Dfe,

z.e.

fK(v, v')¢d*’ = Df, ,

an integral equation in which conservation laws require that K should be
symmetric in v, v’. This has the following interesting consequence: that a
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‘solution can be obtained only if Df, is orthogonal to the solution h(v) of the
homogeneous equation

f K(v, v')h(v)@%' =0,
for |
~ J‘ do f av'hw) K(v, v')$(v") = 0 = [ doh(v) Di(v) .
Since |

[&0, 0180120

gives the rate of change of ¢ produced by collision, the solutions to the homo-
geneous equation are the collision invariants, m, mv, } mv?, and the constraints
on Df, become the zero-order hydrodyna'mic equations. Since for a Maxwel-
lian distribution p,,=nkTé,, q =0, U=3}nkT, these become

- (1.3.5) - %%‘+V-vn+nv-V=0,

o

(1.3.6) = bV = [V(nkT) Fl=o0,

0

(1.3.7) =

( nkT)-l—VV( nkT) +gndeivV=0.

Furthermore, since f, depends on z, and ¢ through =, 7 and ¥, we may write, .
with e=v—V '

e res)n (31 b(Er ) e

me [0 me
+ (at—}—v V) V_W.A: f‘r.

The time derivatives may be eliminated with aid of (I.3.5)-(1.3.7) and

' 5 1me] 1. :



