CYI==S
| Topics in Environmental Fluid Mechanics




ENVIRONMENTAL
STRATIFIED FLOWS

edited by

Roger Grimshaw
Loughborough University
United Kingdom

¥

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London



Distributors for North, Central and South America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Telephone (781) 871-6600

Fax (781) 681-9045

E-Mail <kluwer@wkap.com>

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS
Telephone 31 78 6392 392

Fax 31 78 6546 474

E-Mail <services@wkap.nl>

b 4
P“.‘ Electronic Services <http://www.wkap.nl>

Library of Congress Cataloging-in-Publication Data

Environmental stratified flows / edited by Roger Grimshaw
p. cm. — (Topics in environmental fluid mechanics ; 3)
Includes bibliographical references and index.
ISBN — 0-7923-7605-6

1. Stratified flow. 2. Geophysics. I. Grimshaw, R. II. Topics in environmental fluid

Mechanics ; EFMS3.

QC809.F5 E68 2001
532'.052—dc21

Copyright © 2002 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,

Massachusetts 02061

Printed on acid-free paper. ~ Printed in the United States of America



ENVIRONMENTAL
STRATIFIED FLOWS



THE KLUWER INTERNATIONAL SERIES
TOPICS IN ENVIRONMENTAL FLUID MECHANICS

Series Editors

.

Dr. Philip Chatwin, University of Sheffield, UK
Dr. Gedeon Dagan, 7e/ Aviv University, ISRAEL
Dr. John List, California Institute of Technology, USA
Dr. Chiang Mei, Massachusetts Institute of Technology, USA
Dr. Stuart Savage, McGill University, CANADA

Topics for the series include, but are not limited to:

eSmall-to medium scale atmospheric dynamics: turbulence, convection, dispersion,
aerosols, buoyant plumes, air pollution over cities e Coastal oceanography: air-sea
interaction, wave climate, wave interaction with tides, current structures and coastlines,
sediment transport and shoreline evolution e Estuary dynamics: sediment transport,
cohesive sediments, density stratification, salinity intrusion, thermal pollution,
dispersion, fluid-mud dynamics, and the effects of flow on the transport of toxic wastes
e Physical limnology: internal seiches, sediment resuspensions, nutrient distribution,
and wind-induced currents e Subsurface flow and transport (the unsaturated zone and
groundwater): diffusion and dispersion of solutes, fingering, macropore flow, reactive
solutes, motion of organics and nén-aqueous liquids, volatilization, microbial effects
on organics, density effects, colloids motion and effect, and effects of field scale
heterogeneity e Debris flows, initiated by lava flow from volcanic eruptions; mud
flows caused by mountain storms; snow avalanches, granular flows, and evolution of
deserts ® Oil spills on the sea surface and clean-up e Indoor contamination: transport
of particles in enclosed space, clean room technology, effects of temperature variation

e Risk assessment: industrial accidents resulting in the release of toxic or flammable
gasses, assessment of air and water quality e New methods of data acquisition: the use
of HF radar, satellites, and Earth Observation Science @ Stochastic models and Mass
transfer

Other books in the Series:
Coastal and Shelf Sea Modelling, Philip P.G. dyke; ISBN: 0-7923-7995-0

Diffusion in Natural and Porous Media, Peter Grathwohl; ISBN 0-7923-8102-5



Preface

The dynamics of flows in density-stratified fluids has been and remains
now an important topic for scientific enquiry. Such flows arise in many
contexts, ranging from industrial settings to the oceanic and atmospheric
environments. It is the latter topic which is the focus of this book.
Both the ocean and atmosphere are characterised by the basic vertical
density stratification, and this feature can affect the dynamics on all
scales ranging from the micro-scale to the planetary scale. The aim of
this book is to provide a “state-of-the-art” account of stratified flows
as they are relevant to the ocean and atmosphere with a primary focus
on meso-scale phenomena; that is, on phenomena whose time and space
scales are such that the density stratification is a dominant effect, so
that frictional and diffusive effects on the one hand and the effects of the
earth’s rotation on the other hand can be regarded as of less importance.
This in turn leads to an emphasis on internal waves.

The first three chapters deal with oceanic and atmospheric internal
solitary waves, now recognised to be a highly significant component of
the dynamics of the coastal ocean on the one hand, and the atmospheric
boundary layer on the other hand. In the first chapter Roger Grimshaw
reviews current theoretical models of oceanic and atmospheric internal
solitary waves, emphasising the pivotal role of model evolution equations
of the Korteweg-de Vries type. Then, in the second chapter it Peter
Holloway, Efim Pelinovsky and Tatiana Talipova discuss both the theory
and observations of oceanic internal solitary waves, while in the third
chapter Jim Rottman and Roger Grimshaw do likewise for atmospheric
solitary waves. The closely related topic of gravity currents and internal
bores is then reviewed in the fourth chapter by Jim Rottman and Paul
Linden.

Then, in chapter five Ron Smith reviews theoretical models for internal
waves generated by flow over mountains. Inevitably density-stratified
flows can be turbulent and this issue is addressed in chapter six by it Joe
Fernando. In density-stratified flows as elswhere in fluid mechanics there
is much to be learned from laboratory studies and so in chapter seven
Don Boyer and It Andjelka Srdic-Mitrovic review laboratory studies of
the flow of stratified fluids past obstacles. Then in chapter eight Larry
Redekopp provides a comprehensive review and tutorial of the stability
theory of stratified shear flows.

ROGER GRIMSHAW
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Chapter 1

INTERNAL SOLITARY WAVES

Roger Grimshaw
Loughborough University, UK

Abstract  The basic theory of internal solitary waves is developed, with the main
emphasis on environmental situations, such as the many occurrences
of such waves in shallow coastal seas and in the atmospheric boundary
layer. Commencing with the equations of motion for an inviscid, incom-
pressible density-stratified fluid, we describe asymptotic reductions to
model long-wave equations, such as the well-known Korteweg-de Vries
equation. We then describe various solitary wave solutions, and pro-
pose a variable-coefficient extended Korteweg-de Vries equations as an
appropriate evolution equation to describe internal solitary waves in en-
vironmental situations, when the effects of a variable background and
dissipation need to be taken into account.

) INTRODUCTION

Solitary waves are finite-amplitude waves of permanent form which
owe their existence to a balance between nonlinear wave-steepening pro-
cesses and linear wave dispersion. Typically, they consist of a single
isolated wave of elevation, or depression, depending on the background
state, whose speed is an increasing function of the amplitude. They are
ubiquitous, and in particular internal solitary waves are a commonly oc-
curing feature in the stratified flows of coastal seas, fjords and lakes (see,
for instance, the reviews by Apel (1980, 1995) and Ostrovsky and Stepa-
nyants (1989), as well as Chapter 2 of this monograph), and in the atmo-
spheric boundary layer (see, for instance, the reviews by Smith (1988)
and Christie (1989), as well as Chapter 3 of this monograph). Moreover,
solitary waves are notable, not only because of their widespread occur-
rence, but also because they can be described by certain generic model
equations which are either integrable, or close to integrability. The most
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notable example in this context is the now famous Korteweg-de Vries
equation, which will figure prominently in the sequel.

In this Chapter, our aim is to develop appropriate model equations to
describe internal solitary waves, and indicate, albeit rather briefly, some
of their more salient properties. In the next section we will demon-
strate how canonical model equations can be systematically derived
from the complete fluid equations of motion for an inviscid, incompress-
ible, density-stratified, fluid, with boundary conditions appropriate to
an oceanic situation. The modifications necessary to model the lower
atmosphere are readily made, and will be taken up in Chapter 3 of this
monograph. Our main focus is on the Korteweg-de Vries equation, but
importantly, in order to account for the large amplitudes sometimes ob-
served, we extend this model to the extended Korteweg-de Vries equation
which contains both quadratic and cubic nonlinearity. We shall describe
the solitary wave solutions of these equations before turning, in the third
section, to the modifications necessary to incorporate the effects of a vari-
able background environment and dissipative processes. The outcome is
a variable-coefficient extended Korteweg-de Vries equation. In general
this model equation needs to be solved numerically, but to give some
insight into the nature of the solutions, we describe a particular class
of asymptotic solutions describing a slowly-varying solitary wave. This -
section also contains a brief account of unsteady “undular bores”, inso-
far as they can be described by the Korteweg-de Vries equation. The
Chapter concludes with a discussion of some outstanding issues.

2. LONG WAVE MODELS
2.1 Governing Equations

We shall begin by considering an inviscid, incompressible fluid which
is bounded above by a free surface and below by a flat rigid boundary
(see Figure 1). Initially we shall suppose that the flow is two-dimensional
and can be described by the spatial coordinates (z, z) where z is horizon-
tal and z is vertical. This configuration is appropriate for the modelling
of internal solitary waves in coastal seas, and to some extent in straits,
fjords or lakes provided that the effect of lateral boundaries can be ig-
nored. The extensions to this basic model needed to incorporate these
lateral effects, the effects of a horizontally variable background state,
and various dissipative processes, will be described later in this chapter.
The modifications needed to adapt this model to describe atmospheric
solitary waves will be developed in Chapter 3.

Here, in the basic state the fluid has density po(z), a corresponding
pressure po(z) such that pp, = —gpo describes the basic hydrostatic
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equilibrium, and a horizontal shear flow in the z—direction. Then, in
standard notation, the equations of motion relative to this basic state
are

po(ut +uots +wuoz) +pz = —(po+ p)(uuz +wu;) — p(ur + uous +wuoy),

(2.1a)

Pz + g9p = —(po + p) (wt + vowz + vwe + wWw;) (2.1b)
9(pe + uopz) — poN*w = —g(ups + wp;) (2.1¢)
Uz +w, =0 (2.1d)

Here (uo + u,w) are the velocity components in the (z,z) directions,
po + p is the density, pp + p is the pressure and ¢ is time. N(z) is the
bouyancy frequency, defined by

poN? = —gpo, (2.2)

The boundary conditions are

w=0, at .z2=—h (2.3a)
po+p=0, at z=n, (2.3b)

and
Nt + UoNe + une = w, at z=n. (2.3¢)

Here, the fluid has undisturbed constant depth k, and 7 is the displace-
ment of the free surface from its undisturbed position z = 0. Note that
the effect of the earth’s rotation has been neglected at this stage.

To describe internal solitary waves we seek solutions whose horizontal
length scales are much greater than h, and whose time scales are much
greater than N~!. We shall also assume that the waves have small am-
plitude. Then the dominant balance is obtained by equating to zero the
terms on the left-hand side of (2.1a-d); together with the linearization of
the free surface boundary conditions we then obtain the set of equations
describing linear long wave theory. To proceed it is useful to use the
vertical particle displacement ¢ as the primary dependent variable. It is
defined by

Gt + uole + uly + w¢; = w. (2.4)

Note that it then follows that the perturbation density field is given by
p = po(z —¢) — po(z) = poN?¢ as ¢ — 0, where we have assumed that
as r — —oo, the density field relaxes to its basic state. The isopycnal
surfaces (i.e. po+ p = constant) are then given by z = 29+ { where 2 is
the level as £ — —oo. In terms of ¢, the kinematic boundary condition
(2.3c) becomes simply ( =n at z = 1.



Linear long wave theory is now obtained by omitting the right-hand
side of equations (2.1a-d), and simultaneously linearising boundary con-
ditions (2.3b,c). Solutions are sought in the form

¢ = Az — ct)p(2), (2.5)
while the remaining dependent variables are then given by'
u = (c—ug)A(z — ct)p,(2), - (2.6a)
P = po(c —up)A(z — ct)p.(2), (2.6d)
and
p = poN?A(z — ct)p(2). (2.6¢)

Here c is the linear long wave speed, and the modal functions ¢.(z) are
defined by the boundary-value problem,

{polc — up)%¢.}. + poN?¢=0, in —h<2<0, (2.7a)

¢=0 at z=—h, (2.7b)

and (c —up)?p, = gp at 2=0. (2.7¢c)

Typically, the boundary-value problem (2.7a-c) defines an infinite se-
quence of modes, ¢ (z), n=0,1,2,..., with corresponding speeds .

Here, the superscript “+” indicates waves with ¢} > up = maxug(z)
and ¢, < up = minug(2) respectively. We shall confine our attention to
these regular modes, and consider only stable shear flows. Nevertheless,
we note that there may also exist singular modes with u,, < ¢ < ups for
which an analogous theory can be developed (Maslowe and Redekopp,
1980). Note that it is useful to let n = 0 denote the surface gravity
waves for which ¢ scales with /gh, and then n = 1,2,3,... denotes
the internal gravity waves for which ¢ scales with Nh. In general, the
boundary-value problem (2.7a-c) is readily solved numerically. Typi-

cally, ¢ (2), n = 1,2,3,..., have n extremal points in the interior of
the fluid, and vanish near z = 0 (and, of course, also at z = —h)
2.2 Time Evolution

It can now be shown that, within the context of linear long wave
theory, any localised initial disturbance will evolve into a set of out-
wardly propogating modes, each given by an expression of the form
(2.5). Indeed, it can be shown that the solution of the linearised long
wave equations is given asymptotically by

¢~ i AL (z - ctt)gt(z), as t — oo (2.8)

n=0
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Here the amplitudes AZ(z) are determined in terms of the initial condi-
tions,
o= C(O)(:z:, 2N — u(o)(m,z), at t =0 (2.9)
by the integral expressions,

Bar@) = [

5 ,
pof(c —w0)(? +u® +uo.( O}, dz,  (2.100)

where 3
F e /  polcs — uo)gE2dz (2.10b)

Assuming thats the speeds ¢ of each mode are sufficiently distinct, it is
sufficient for large times to consider just a single mode. Henceforth, we
shall omit the indices and assume that the mode has speed ¢, amplitude
A and modal function ¢(z). Then, as time increases, we expect the
hitherto neglected nonlinear terms to have an effect, and to cause wave
steepening. However, this is opposed by the terms representing linear
wave dispersion, also neglected in the linear long wave theory. We expect
a balance between these two effects to emerge as time increases. It is now
well-known that the outcome is the Korteweg-de Vries (KdV) equation,
or a related equation, for the wave amplitude.

The formal derivation of the evolution equation requires the intro-
duction of the small parameters, a and ¢, respectively characterising the
wave amplitude and dispersion. A KdV balance requires a = €2, with a
corresponding timescale of e 3. The asymptotic analysis required is well
understood (e.g. Benney (1996), Lee and Beardsley (1974), Ostrovsky
(1978), Maslowe and Redekopp (1980), Grimshaw (1981a), Tung et al
(1981)), so we shall give only a brief outline here. We introduce the
scaled variables

T=¢cat, 0=¢e(z—ct) (2.11)

and then let
¢ =A@, 7)d(2z) + ¢+ ..., (2.12)

with similar expressions analgous to (2.6a-c) for the other dependent
variables. At leading order, we get the linear long wave theory for the
modal function ¢(2) and the speed ¢, defined by (2.7a-c). Note that since
the modal equation is homogeneous, we are free to impose a normaliza-
tion condition on ¢(z). A commonly used condition is that ¢(zm,) = 1
where |¢(2)| achieves a maximum value at 2 = z,. In this case the
amplitude oA is uniquely defined as the amplitude of ¢ (to 0(a)) at the
depth z,,. Then, at the next order, we obtain the equation for (2,

{po(c — u0)2Ca0:}s + poN*Cag = M3, in —h<2<0, (2.13a)



G0=0, at z=—h, (2.13b)
po(c — ug)%Ca0, — poglap = Na, at z=0. (2:13¢)

Here the inhomogeneous terms M, Ny are known in terms of A(6,7)
and ¢(z), and are given by

M3 = 2{po(c — u0)$z}zAr + 3{po(c — uo)?¢2},AAg — po(c — u0)2(¢Aoeo,
- 2.14a)
Nz = 2{po(c — uo)$:}Ar + 3{po(c — uo)?¢2} AAy. (2.14b)

Note that the left-hand side of the equations (2.13a-c) is identical to the
equations defining the modal function (i.e. (2.7a-c)), and hence can be
solved only if a certain compatibility condition is satisfied. To obtain this
compatibility condition, we first note that a formal solution of (2.13a)
which satisfies the boundary condition (2.13b) is

T /_ zh %dz i /_ zh Mwﬁdz, (2.150)
where
W = po(c — up)?{p-0 — V. 0} (2.15b)

Here 7(z) is a solution of the modal equation (2.7a) which is linearly
independent of ¢(z), and so, in particular ¥(—h) # 0. W (2.15b) is the
Wronskian of these two solutions, and is a constant independent of z.
Indeed, the expression (2.15b) can then be used to obtain 7 explicitly
in terms of ¢. The homogeneous part Asg¢ of the expression (2.15a)
for (99 introduces the second-order amplitude Ay(6, 7). Next, we insist
that the expression (2.15a) for (9 should satisfy the boundary condition
(2.13c). The result is the compatibility condition

0
[ Mab dz = [Naglumo (2.16)

Note that the amplitude A is left undetermined at this stage.
Substituting the expressions (2.14a,b) into (2.16) we obtain the re-
quired evolution equation for A, namely the KdV equation

A+ pAAg + AAggg = 0. (2.17)
Here, the coefficients u and A are given by

0
Ip= 3/ po(c — uo)?¢3 dz, (2.18a)
A

0
IN= / po(c — ug)2¢? dz, (2.18b)
~h
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where o
== / X po(c — ug)¢? dz. (2.18¢)

Note that here I is just I¥ (2.10b) with the subscript and supersecript
omitted. Confining attention to waves propagating to the right, so that
¢ > upy = maxug(z), we see that I and A are always positive. Further, if
we normalise the first internal modal function ¢(z) so that it is positive
at its extremal point, then it is readily shown that for the usual situation
of a near-surface pycnocline, y is negative for this first internal mode.
However, in general p can take either sign, and in some special situations
may even be zero. Explicit evaluation of the coefficients u and A requires
knowledge of the modal function, and hence they are usually evaluated
numerically.

Proceeding to the next highest order will yield an equation set analo-
gous to (2.13a-c) for (3, whose compatibility condition then determines
an evolution equation for the second-order amplitude A;. We shall not
give details here, but note that using the transformation A + aAs — A,
and then combining the KdV equation (2.17) with the evolution equa-
tion for Ag will lead to a higher-order KdV equation for A, in which the
right-hand side of the KdV equation (2.17) contains terms proportional
to aAegess, AAges, aAgAgs and aA?Ay (see for instance, Gear and
Grimshaw (1983), Lamb and Yan (1996), and Grimshaw et al (1997)).

A particularly impotant special case of the higher-order KdV equation
arises when the nonlinear coefficient p (2.18a) in the KdV equation is
close to zero. In this situation, the cubic nonlinear term in the higher-
order KdV equation is the most important higher-order term. The KdV
equation (2.17) may then be replaced by the extended KdV equation,

A + pAAg + avA?Ag + MAgge = 0. (2.19)

For p = 0, a rescaling is needed and the optimal choice is to assume
that p is O(e), and then replace A with A/e. In effect the amplitude
parameter is € in place of €2. The coefficient v of the cubic nonlinear
term is given by

v =3 [ pofe—u0)2(3x —262)dx +
= (2.20a)

7 /0 po(c — u)0)$. {542 — 4x.}dz — y? /0 podldz
6 A 4 z >4 o z E)
where
2 2 3 2 42
{po(c — w0)"xz}z + PON"Xx = {590(0 — u) ¢z} — p{po(c — u0) Pz} 2,
§ (2.20b)



xX=0 at z=-—h, (2.20c)

and
: 3
po(c—u0)*xz —Pogx = 5/’0(0—"0)2¢§ —ppo(c—uo)$; at z = 0. (2.20d)

Note here that, although the terms with coefficients p or u? can be
omitted in the asymptotic limit € — 0, it is useful in practice to retain
them so that this expression for v remains valid even when p is not
small.

The function x(z) is determined from the equation set (2.20b-d),
which can be recognised as an inhomogeneous form of the modal equa-
tion set (2.7a-c). Indeed, it is readily seen from (2.13a-c) that

Go = Asd + A%x + AgeX, . (2.21)

where the function x(z) also satisfies an inhomogeneous form of the
modal eqution, analogous to (2.20b-d), but with the right-hand side
of (2.20b) replaced with —po(c — u0)%¢ — 2A{po(c — u0)?¢.}., and the
right-hand side of (2.20d) replaced by —2Apo(c — ug)@,. Of course here,
we must use the compatibility condition (2.16), which is just the KdV
equation (2.17), to eliminate A, from M, and N;. But now we see that
the equation set (2.20b-d) does not define x(z) uniquely, and hence v
(2.20a) is not unique either. Indeed we can always add a term y¢(z) to x,
which has the effect of adding a term yu to v. But this is just equivalent
to the transformation Ay — Ag +vA2%, or A — A+ ayA?2, and it is then
readily verified that this will asymptotically transform (2.19) into itself
with v replaced by v+apu. Thus, the lack of uniqueness in v is related to
a lack of uniqueness in Ay, or equivalently in (3. The remedy is that we
are free to impose an extra condition on 7. For instance, if we suppose
that x, = 0 at z = —h, then it follows that x = x, say, where

o /_ Zh %dz — /_ zh J;?V—¢dz (2.22)

where fy is the right-hand side of (2.20b), and we recall that v is de-
fined by (2.15b). The expression (2.22) is readily evaluated numerically,
and is consequently recommended as a standard for the calculation of v.
However, if an alternative condition is required, then it can readily be
found by adding a term ¢ to x;, and using the new condition to deter-
mine v. For instance, it is sometimes useful to require that x (and also
X) vanish at z,,, where we recall that ¢(z,,) = 1, and z = 2z, locates the
maximum value of |¢(2)|. In this case we simply have that v = —xp(2m),
and then x = xp +v¢. Thus, ( = aAp+a?(a+ ..., and the amplitude
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aA + a?A; is uniquely defined as the amplitude of ¢ (to 0(A2)) at the
depth z,.

In some atmospheric and oceanic applications, the depth h is not
necessarily small relative to the horizontal length scale of the solitary
wave, but nevertheless the density stratification is effectively confined
to a thin layer of depth hj, which is much shorter that the horizontal
length scales. In this case, a different theory is needed, and was first
developed by Benjamin (1967) and Davis and Acrivos (1967). Several
variants are possible, so, to be specific, we shall describe an oceanic case
when po(z), and up(z) vary only in a near-surface layer of depth hj,
below which pp(2) = ps (a constant) and ug(z) = 0, while the ocean
bottom is now given by z = —H/e (i.e. H = €h). The modal function
is again defined by (2.7a,c) but the bottom boundary condition (2.7b)
is now replaced by a matching condition that ¢, — 0 as 2 — —o0. To
derive the evolution equation, we again use the asymptotic expansion
(2.12) but now with o = € and restricted to the near-surface layer. This
expansion is matched to an appropriate solution in the deep-fluid region
where Laplace’s equation holds at leading order. The outcome is the
intermediate long-wave (ILW) equation (Kubota et al (1978), Maslowe
and Redekopp (1980), Grimshaw (1981a), Tung at al (1981),

A, + pAAg + 6L(Ag)) = 0, (2.23a)
where
1 o0
L) =—o / k coth kH exp(ik6)F(A)dk, (2.23b)
—00
and -
F(4) = / Aexp(—ik0))do (2.23¢)
—00

Here the nonlinear coefficient y is again given by (2.18a) with —h now
replaced by —oco, while the dispersive coefficient ¢ is defined by I§ =
(poc®#?).——co- In the limit H — oo, kcothkH — |k| on the integrand
of (2.21b) and (2.21a) becomes the Benjamin-Ono (BO) equation. In
the opposite limit H — 0, (2.23a) reduces to a KdV equation.

An important variant of the ILW equation (2.23a) arises when it is
supposed that the deep ocean is infinitely deep (H — o) and weakly
stratified, with a constant buoyancy frequency e¢Np. Then the operator
L(A) in (2.21a) is replaced by (Maslowe and Redekopp (1980), Grimshaw
(1981b))

Lot —% /_ <’:O(;c? — m?)} exp(ik0) F(A)dk,  (2.24)
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where m = Np/c. Now internal gravity waves can propagate vertically
in the deep fluid region, and to ensure that these waves are outgoing,
a radiation condition is needed. Thus (k? — mz)% is either real and
positive for k? > m?, or isign k(m? — k2)% for k2 < m?2. As m — 0,
(2.24) becomes the BO equation.

2.3 Solitary Waves

Each of the evolution equations (viz. the KdV equation (2.17), the
extended KdV equation (2.19) and the ILW equation (2.23a)) are ex-
actly integrable (see, for instance, Ablowitz and Segur (1981), or Dodd
et al (1982)), with the consequence that the initial-value problem with a
localised initial condition is exactly solvable. But note that the variant
(2.24) is not integrable. The most important implication of this integra-
bility from the perspective of this monograph is that an arbitrary initial
disturbance will evolve into a finite number (V) of solitary waves (called
solitons in this context) and an oscillatory decaying tail. This, together
with the robust stability properties of solitary waves, explains why inter-
nal solitary waves are so commonly observed. Note that because solitary
waves typically have speeds which increase with the wave amplitude, the
N waves are rank-ordered by amplitude as ¢ — oo. Also, to produce soli-
tary waves at all, the initial disturbance should have the correct polarity
(e.g. p[Zo, A(6,0)df > 0 for the case of the KAV equation (2.17)). A
typical solution of the KdV equation showing the generation of solitary
waves is shown in Figure 2. Note that, in applications the initial condi-
tion A(0,0) for the evolution equation is found by first solving the linear
long wave equations, and then identifying the mode of interest. Thus
A(6,0) is given by (2.10a) in terms of the actual initial conditions (2.9).

It follows from the proceeding discussion that in describing the solu-
tion of the evolution equations, the most important step is to determine
the solitary wave solution. For the KdV equation (2.17) this is given by

A = asech®B(6 — V1) (2.25a)
where A
V=3gpe= 4262, (2.25b)

Note that the speed V is for the phase variable 6, and the actual total
speed is ¢ + aV. Since the dispersion coefficient ) is always positive
for right-going waves, it follows that these solitary waves are always
supercritical (V' > 0), and are waves of elevation or depression according
as u20. We also see that -1 is proportional to |a|_%, and hence the
larger waves are not only faster, but narrower.



